Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical microscopy using a single-molecule light source

Abstract

Rapid progress in science on nanoscopic scales has promoted increasing interest in techniques of ultrahigh-resolution optical microscopy. The diffraction limit can be surpassed by illuminating an object in the near field through a sub-wavelength aperture at the end of a sharp metallic probe1,2. Proposed modifications3,4 of this technique involve replacing the physical aperture by a nanoscopic active light source. Advances in the spatial5 and spectral6 detection of individual fluorescent molecules, using near-field and far-field methods7, suggest the possibility of using a single molecule8,9 as the illumination source. Here we present optical images taken with a single molecule as a point-like source of illumination, by combining fluorescence excitation spectroscopy10 with shear-force microscopy11. Our single-molecule probe has potential for achieving molecular resolution in optical microscopy; it should also facilitate controlled studies of nanometre-scale phenomena (such as resonant energy transfer) with improved lateral and axial spatial resolution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of experimental features for realizing a single-molecule probe.
Figure 2: Topography and optical images of the sample.
Figure 3: Images taken with the same molecule positioned at four different distances from the sample.

References

  1. Lewis, A., Isaacson, M., Muray, A. & Harootunian, A. Scanning optical microscopy with 500 Å spatial resolution. Biophys. J. 41, 405 (abstr.) (1983).

    Google Scholar 

  2. Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984).

    Article  ADS  Google Scholar 

  3. Liebermann, K., Harush, S., Lewis, A. & Kopelman, R. A light source smaller than the optical wavelength. Science 247, 59–61 (1990).

    Article  ADS  Google Scholar 

  4. Lewis, A. & Liebermann, K. Near-field optical imaging with a non-evanescently excited high-brightness light source of sub-wavelength dimensions. Nature 354, 214– 216 (1991).

    Article  ADS  Google Scholar 

  5. Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62 , 2535–2538 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Basché, T., Moerner, W. E., Orrit, M. & Wild, U. P. Single Molecule Optical Detection, Imaging and Spectroscopy (VCH, Weinheim, Germany, 1997).

    Google Scholar 

  8. Kopelman, R. & Tan, W. Near-field optics: imaging single moelcules. Science 262, 1382–1384 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Sekatskii, S. K. & Letokhov, V. S. Single fluorescence centers on the tips of crystal needles: first observation and prospects for application in scanning one-atom fluorescence microscopy. Appl. Phys. B 63, 525–530 ( 1996).

    Article  ADS  CAS  Google Scholar 

  10. Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-therphenyl crystal. Phys. Rev. Let. 65, 2716–2719 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Betzig, E., Finn, P. L. & Weiner, J. S. Combined shear force and near-field scanning optical microscope. Appl. Phys. Lett. 60, 2484– 2486 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Gross Levi, B. Progress made in near-field imaging with light from a sharp tip. Phys. Today 52, 18–20 ( 1999).

    Article  Google Scholar 

  13. Michaelis, J. et al. A single molecule as a probe of the optical intensity distribution. Opt. Lett. 24, 581–583 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Bingelli, M. et al. Novel design for a compact fiber optic scanning force microscope. Rev. Sci. Instrum. 64, 2888– 2891 (1993).

    Article  ADS  Google Scholar 

  15. Karrai, K. & Grober, R. D. Piezoelectric tip-sample distance control for near-field optical microscopes. Appl. Phys. Lett. 66, 1842–1844 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Fleury, L., Sick, B., Zumhofen, G., Hecht, B. & Wild, U. P. High photo-stability of single molecules in an organic crystal at room temperature observed by scanning confocal microscopy. Mol. Phys. 95, 1333–1338 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Kulzer, F., Koberling, F., Christ, T., Mews, A. & Basché, T. Terrylene in p-terphenyl: single molecule experiments at room temperature. Chem. Phys. 247, 23–34 (1999).

    Article  CAS  Google Scholar 

  18. Kummer, S., Basché, T. & Bräuchle, C. Terrylene in p-terphenyl: a novel single crystalline system for single molecule spectroscopy at low temperatures. Chem. Phys. Lett. 229, 309–316 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Fischer, U. & Zingsheim, H. P. Submicroscopic pattern replication with visible light. J. Vac. Sci. Technol. 19, 881–885 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Ambrose, P., Basché, T. & Moerner, W. E. Detection and spectroscopy of single pentacene molecules in a p-terphenyl crystal by means of fluorescence excitation. J. Chem. Phys. 95, 7150–7163 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Betzig, E., Trautman, J. K., Weiner, J. S., Harris, T. D. & Wolfe, R. Polarization contrast in near-field scanning optical microscopy. Appl. Opt. 31, 4563–4568 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Huser, T., Novotny, L., Lacoste, T., Eckert, R. & Heinzelmann, H. Observation and analysis of near-field optical diffraction. J. Opt. Soc. Am. A 16, 141– 148 (1999).

    Article  ADS  Google Scholar 

  23. Martin, O. J. F., Girard, C. & Dereux, A. Generalized field propagator for electromagnetic scattering and light confinement. Phys. Rev. Lett. 74, 526–529 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Martin, O. J. F. 3D simulations of the experimental signal measured in near-field optical microscopy. J. Microscopy 194, 235– 239 (1999).

    Article  CAS  Google Scholar 

  25. Novotny, L. Single molecule fluorescence in inhomogeneous environments. Appl. Phys. Lett. 69, 3806–3808 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Henkel, C. & Sandoghdar, V. Single molecule spectroscopy near structured dielectrics. Opt. Comm. 158, 250–258 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Harootunian, A., Betzig, E., Issacson, M. & Lewis, A. Super-resolution fluorescence near-field scanning optical microscopy. Appl. Phys. Lett. 49, 674–676 ( 1986).

    Article  ADS  CAS  Google Scholar 

  28. Barchiesi, D., Pagnot, T., Pieralli, C. & Van Labeke, D. Fluorescence scanning near-field microscopy (FSNOM) by measuring the decay-time of a fluorescent particle. Proc. SPIE 2384, 90– 100 (1995).

    Article  ADS  Google Scholar 

  29. Kulzer, F., Kummer, S., Matzke, R., Bräuchle, C. & Basché, T. Single molecule optical switching in terrylene in p-terphenyl. Nature 387, 688– 691 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to O. Martin and C. Henkel for many fruitful discussions. We thank B. Eiermann for contribution to the initial phase of the experiment, T. Kalkbrenner for the fabrication of the sample, and H. M. Ludwig for the AFM image in Fig. 2. We also thank P. Leiderer and his co-workers, and colleagues at Omicron Vakuum GmbH for help and advice regarding the construction of the piezo-driven translation stages. J. M. acknowledges a fellowship from the Carl-Zeiss-Schott Förderstiftung. This work was supported by the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sandoghdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelis, J., Hettich, C., Mlynek, J. et al. Optical microscopy using a single-molecule light source. Nature 405, 325–328 (2000). https://doi.org/10.1038/35012545

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012545

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing