Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A thermodynamic explanation for black smoker temperatures

Abstract

There is a remarkable difference between the maximum temperature of black smoker effluent (350 °C–400 °C) and the temperature of the solidifying magma which heats it (1,200 °C)1,2,3. It has been suspected4 for some time that the nonlinear thermodynamic properties of water5 might be responsible for this discrepancy. Here, we translate this hypothesis into a physical model, by examining the internal temperature structure of convection cells in a porous medium. We demonstrate that, at pressures appropriate to seafloor crust, plumes of pure water form naturally at 400 °C for any heat source with temperature greater than 500 °C. Higher temperatures are confined to a boundary layer at the base of the convection cell, where the flow is horizontal. The phenomenon is explained analytically using the thermodynamic properties of water, and is illustrated by numerical simulations. Our model predicts the existence of the high-temperature ‘reaction zone’ found in ophiolites6 and suggests that vent temperatures will remain steady as magma chambers solidify and cool7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The steady-state temperature distribution in a convection cell at sea floor pressures.
Figure 2: Early stages of the simulation, at the bottom of the domain shown in Fig. 1.
Figure 3: ‘Fluxibility’ F and ‘fluxibility gradient’ |∂F/∂T| (in normalized units) a, F as a function of temperature T and pressure p.

Similar content being viewed by others

References

  1. Lister, C. R. B. Heat transfer between magmas and hydrothermal systems, or, six lemmas in search of a theorem. Geophys. J. Int. 120, 45–59 (1995).

    Google Scholar 

  2. Lowell, R. P., Rona, P. A. & Von Herzen, R. P. Seafloor hydrothermal systems. J. Geophys. Res. 100, 327–352 ( 1995).

    Article  ADS  CAS  Google Scholar 

  3. Wilcock, W. S. D. Cellular convection models of mid-ocean ridge hydrothermal circulation and the temperatures of black smoker fluids. J. Geophys. Res. 103, 2585–2596 (1998).

    Article  ADS  Google Scholar 

  4. Bischoff, J. L. & Rosenbauer, R. J. An empirical equation of state for hydrothermal seawater (3. 2 percent NaCl). Amer. J. Sci. 285, 725–763 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Johnson, J. W. & Norton, D. Critical phenomena in hydrothermal systems: state, thermodynamic, electrostatic, and transport properties of H2O in the critical region. Am. J. Sci. 291, 541–648 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Gillis, K. M. & Roberts, M. D. Cracking at the magma-hydrothermal transition: evidence from the Troodos Ophiolite, Cyprus. Earth Planet. Sci. Lett. 169, 227–244 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Lowell, R. P. & Germanovich, L. N. On the temporal evolution of high-temperature hydrothermal systems at ocean ridge crests. J. Geophys. Res. 99, 565–575 (1994).

    Article  ADS  Google Scholar 

  8. Lister, C. R. B. On the penetration of water into hot rock. Geophys. J. R. Astron. Soc. 39, 465–509 ( 1974).

    Article  ADS  Google Scholar 

  9. Fournier, R. O. The transition from hydrostatic to greater than hydrostatic fluid pressure in presently active continental hydrothermal systems in crystalline rock. Geophys. Res. Lett. 18, 955– 958 (1991).

    Article  ADS  Google Scholar 

  10. Lowell, R. P., Van Cappellen, P. & Germanovich, L. Silica precipitation in fractures and the evolution of permeability in hydrothermal upflow zones. Science 260, 192–194 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Germanovich, L. N. & Lowell, R. P. Percolation theory, thermoelasticity, and discrete hydrothermal venting in the Earth's crust. Science 255, 1564– 1567 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Straus, J. M. & Schubert, G. Thermal convection of water in a porous medium: effects of temperature- and pressure-dependent thermodynamic and transport properties. J. Geophys. Res. 82, 325–333 (1977).

    Article  ADS  Google Scholar 

  13. Dunn, J. C. & Hardee, H. C. Superconvecting geothermal zones. J. Volcanol. Geotherm. Res. 11, 189– 201 (1981).

    Article  ADS  Google Scholar 

  14. Ingebritsen, S. E. & Hayba, D. O. Fluid flow and heat transport near the critical point of H2O. Geophys. Res. Lett. 21, 2199–2202 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Norton, D. & Knight, J. Transport phenomena in hydrothermal systems: cooling plutons. Am. J. Sci. 277, 937–981 (1977).

    Article  ADS  Google Scholar 

  16. Hayba, D. O. & Ingebritsen, S. E. The Computer Model HYDROTHERM, a Three-dimensional Finite-difference Model to Simulate Ground-water Flow and Heat Transport in the Temperature Range of 0 to 1,200 degrees Celsius. (US Geological Survey Water-Resources Investigations Report, 94-4045, Denver, Colorado, 1994).

    Google Scholar 

  17. Dickson, P., Schultz, A. & Woods, A. in Hydrothermal Vents and Processes (ed. Parson, L. M. et al.) Vol. 87, 145–157 (Geological Society Special Publication, London, 1995).

    Google Scholar 

  18. Faust, C. R. & Mercer, J. W. Geothermal reservoir simulation 1. Mathematical models for liquid- and vapor-dominated hydrothermal systems. Wat. Resour. Res. 15, 23– 30 (1979).

    Article  ADS  Google Scholar 

  19. Haar, L., Gallagher, J. S. & Kell, G. S. NBS/NRC Steam Tables, 1– 320 (Hemisphere, New York, 1984).

    Google Scholar 

  20. Watson, J. T. R., Basu, R. S. & Sengers, J. V. An improved representative equation for the dynamic viscosity of water substance. J. Phys. Chem. Ref. Data 9, 1255–1290 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Sengers, J. V. & Kamgar-Parsi, B. Representative equations for the viscosity of water substance. J. Phys. Chem. Ref. Data 13, 185–205 ( 1984).

    Article  ADS  CAS  Google Scholar 

  22. Sengers, J. V. & Watson, J. T. R. Improved international formulation for the viscosity and thermal conductivity of water substance. J. Phys. Chem. Ref. Data 15, 1291–1314 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Elder, J. E. Geothermal Systems 180–187 (Academic, London, 1981).

    Google Scholar 

  24. Pascoe, A. R. & Cann, J. R. in Hydrothermal Vents and Processes (ed. Parson, L. M. et al.) Vol. 87, 159– 173 (Geological Society Special Publication, London, 1995).

    Google Scholar 

  25. Anderko, A. & Pitzer, K. S. Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K. Geochim. Cosmochim. Acta. 57, 1657–1680 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Lapwood, E. R. Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44, 508–521 ( 1948).

    Article  ADS  MathSciNet  Google Scholar 

  27. Phillips, O. M. Flow and Reactions in Permeable Rocks 245–264 (Cambridge Univ. Press, 1991).

    Google Scholar 

Download references

Acknowledgements

We thank USGS for permission to use HYDROTHERM. The calculations were carried out on the Enigma high-performance computing centre at the Institute of Theoretical Geophysics. We acknowledge the support of that facility by the Higher Education Research Foundation for England. T.J. is supported by a studentship from the Natural Environment Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Jupp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jupp, T., Schultz, A. A thermodynamic explanation for black smoker temperatures. Nature 403, 880–883 (2000). https://doi.org/10.1038/35002552

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002552

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing