Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Onset of permanent stratification in the subarctic Pacific Ocean

Abstract

The surface waters of the modern subarctic Pacific Ocean are isolated from the nutrient-rich waters below by a steep vertical gradient in salinity (halocline), a feature which is a dominant control on upper-ocean stratification in polar environments1,2,3. The physical processes which maintain the halocline and, in turn, its physical, biological, and geochemical effects have long been subjects of intense inquiry3,4. The stratification of polar surface waters influences the exchange of CO2 between ocean and atmosphere5,6,7,8, so the history of the subarctic Pacific halocline may have played a role in past changes in atmospheric CO2 concentration. Here we report opal accumulation rates and nitrogen-isotope data from sediments in this region which indicate that the subarctic Pacific halocline developed abruptly 2.73 million years ago, coincident with the onset of extensive Northern Hemisphere glaciation. The halocline would have reduced the transport of nutrient-rich deep water into the euphotic zone, leading to a decrease in biological production but an increase in the fraction of nutrient stocks utilized. This increase in the efficiency of the ‘biological pump’ would have lowered the rate of CO2 evasion from ocean to atmosphere, potentially reducing atmospheric CO2 concentrations from the suggested higher level of the preceding mid-Pliocene warm interval9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subarctic Pacific palaeoceanographic time series (ODP Site 882).
Figure 2: Subarctic Pacific and Caribbean Sea palaeoceanographic records.
Figure 3: Schematic changes in the efficiency of the biological pump.

Similar content being viewed by others

References

  1. Reid,J. L. Sea surface temperature, salinity, and density of the Pacific Ocean in summer and in winter. Deep-Sea Res. 16 (suppl.), 215–224 (1969).

    Google Scholar 

  2. Talley,L. D. Distribution and formation of North Pacific intermediate water. J. Phys. Oceanogr. 23, 517–537 (1993).

    Article  ADS  Google Scholar 

  3. Warren,B. Why is no deepwater formed in the North Pacific? J. Mar. Res. 41, 327–347 (1983).

    Article  Google Scholar 

  4. Chisholm,S. W. & Morel,F. M. M. (eds) What controls phytoplankton production in nutrient-rich areas in the open sea? Limnol. Oceanogr. 36, 1507–1970 (1991).

    Article  Google Scholar 

  5. Knox,F. & McElroy,M. B. Changes in atmospheric CO2: Influence of the marine biota at high latitude. J. Geophys. Res. 89, 4629–4637 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Sarmiento,J. L. & Toggweiler,R. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Siegenthaler,U. & Wenk,T. Rapid atmospheric CO2 variations and ocean circulation. Nature 308, 624–626 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Francois,R. et al. Contributions of Southern Ocean surface water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929–935 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Budyko,M. I., Ronov,A. B. & Yanshin,A. I. The history of the Earth atmosphere. Gidrometeoizdat 1–139 (Springer, Berlin; English translation, 1987).

  10. Raymo,M. E., Grant,B., Horowitz,M. & Rau,G. H. Mid-Pliocene warmth: stronger greenhouse and stronger conveyor. Mar. Micropaleontol. 27, 313–326 (1996).

    Article  ADS  Google Scholar 

  11. Gargett,A. E. Physical processes and the maintenance of nutrient-rich euphotic zones. Limnol. Oceanogr. 36, 1527–1546 (1991).

    Article  ADS  Google Scholar 

  12. Falkowski,P. G., Barber,R. T. & Smetacek,V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).

    Article  CAS  Google Scholar 

  13. Levitus,S., Conkright,M., Reid,J. L., Najjair,R. G. & Mantyla,A. Distribution of nitrate, phosphate and silicate in the world ocean. Proc. Oceanogr. 31, 245–273 (1993).

    Article  ADS  Google Scholar 

  14. Broecker,W. S. & Peng,T. H. Tracers in the Sea 1–690 (Eldigo, New York, 1982).

    Google Scholar 

  15. Haug,G. H. Zur Paläoozeanographie und Sedimentationsgeschichte des Nord-Pazifiks während der letzten 6 Millionen Jahre (ODP Site 882, Leg 145). Berichte-Reports Geol. Inst. Univ. Kiel 78, 1–98 (1996).

    Google Scholar 

  16. Rea,D. K. et al. Proc. ODP Int. Rep. 145, 85–119 (1993).

    Google Scholar 

  17. Tiedemann,R. & Haug,G. H. Astronomical calibration of Site 882 cycle stratigraphy in the northwest. Proc. ODP Sci. Res. 145, 283–293 (1995).

    Google Scholar 

  18. Keigwin,L. D., Jones,G. A. & Froelich,P. N. A 15,000 year paleoenvironmental record from the Meiji Seamount, far Northwestern Pacific. Earth Planet. Sci. Lett. 111, 425–440 (1992).

    Article  ADS  Google Scholar 

  19. Altabet,M. & Francois,R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycles 8, 103–116 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Farrell,J. W., Pedersen,T. F., Calvert,S. E. & Nielsen,B. Glacial–interglacial changes in nutrient utilization in the equatorial Pacific Ocean. Nature 377, 514–517 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Sigman,D. M., Keigwin,L. D., Altabet,M. A. & McCorkle,D. C. The nitrogen isotopic analysis of a deglacial productivity event in the western subarctic Pacific. Eos 74, 185 (1993).

    Google Scholar 

  22. Tiedemann,R. & Franz,S. O. Deep-water circulation, chemistry, and terrigenous sediment supply in the equatorial Atlantic during the Pliocene, 3.3–2.6 Ma and 5–4.5 Ma. Proc. ODP Sci. Res. 154, 299–318 (1997).

    CAS  Google Scholar 

  23. Haug,G. H. & Tiedemann,R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393, 673–676 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Keir,R. On the Late Pleistocene ocean geochemistry and circulation. Paleoceanography 3, 413–447 (1988).

    Article  ADS  Google Scholar 

  25. Raymo,M. E., Hodell,D. & Jansen,E. Response of deep ocean circulation to initiation of Northern Hemisphere Glaciation (3–2 Ma). Paleoceanography 7, 645–672 (1992).

    Article  ADS  Google Scholar 

  26. Sancetta,C. & Silvestri,S. Pliocene-Pleistocene evolution of the North Pacific ocean-atmosphere system, interpreted from fossil diatoms. Paleoceanography 1, 163–180 (1986).

    Article  ADS  Google Scholar 

  27. Maslin,M. A., Haug,G. H., Sarnthein,M., Tiedemann,R., Erlenkeuser,H. & Stax,R. Northwest Pacific Site 882: The initiation of northern hemisphere glaciation. Proc. ODP Sci. Res. 145, 315–333 (1995).

    Google Scholar 

  28. Mortlock,R. A. et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351, 220–223 (1991).

    Article  ADS  Google Scholar 

  29. Kumar,N. et al. Increased biological productivity and export production in the glacial Southern Ocean. Nature 378, 675–680 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Morley,J. J. & Hayes,J. D. Oceanographic conditions associated with high abundances of the radiolarian Cycladophora davisiana. Earth Planet. Sci. Lett. 66, 63–72 (1983).

    Article  ADS  Google Scholar 

  31. Sigman,D. M. et al. The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography 14, 118–134 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Barron, R. Francois, S. Honjo, T. Joyce, L. Keigwin, M. Maslin and R. Toggweiler for discussions. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald H. Haug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haug, G., Sigman, D., Tiedemann, R. et al. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401, 779–782 (1999). https://doi.org/10.1038/44550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44550

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing