Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Geomorphic limits to climate-induced increases in topographic relief

Abstract

Recognition of the potential for strong dynamic coupling between atmospheric and tectonic processes has sparked intense cross-disciplinary investigation and debate on the question of whether tectonics have driven long-term climate change or vice versa. It has been proposed that climate change might have driven the uplift of mountain summits through an isostatic response to valley incision. Because isostasy acts to compensate mean elevations, the debate hinges on the question of whether climate change can significantly increase topographic relief or, more precisely, increase the volume of ‘missing mass’ between summits and ridges. Here we show that, in tectonically active mountain ranges, geomorphic constraints allow only a relatively small increase in topographic relief in response to climate change. Thus, although climate change may cause significant increases in denudation rates, potentially establishing an important feedback between surficial and crustal processes, neither fluvial nor glacial erosion is likely to induce significant isostatic peak uplift.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sketch showing definitions of the components of fluvial relief.
Figure 2: Equilibrium relief in fluvial landscapes.
Figure 3: Numerical simulation of the transient response of a channel profile to a sudden, uniform increase in erosivity. (Shown is the effect of a two-fold increase in K in equation (1).) Inset shows the transient response in slope-area space (log–log scale).
Figure 4: Relief structure of glaciated landscapes.
Figure 5: Glacial relief adjustment mechanisms.

Similar content being viewed by others

References

  1. Koons,P. O. Modeling the topographic evolution of collisional belts. Annu. Rev. Earth Planet. Sci. 23, 375–408 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Beaumont,C., Kamp,P., Hamilton,J. & Fullsack,P. The continental collision zone, South Island, New Zealand: Comparison of geodynamical models and observations. J. Geophys. Res. 101, 3333–3359 (1996).

    Article  ADS  Google Scholar 

  3. Gilchrist,A. R., Summerfield,M. A. & Cockburn,H. A. P. Landscape dissection, isostatic uplift, and the morphologic development of orogens. Geology 22, 963–966 (1994).

    Article  ADS  Google Scholar 

  4. Montgomery,D. R. Valley incision and the uplift of mountain peaks. J. Geophys. Res. 99, 13913–13921 (1994).

    Article  ADS  Google Scholar 

  5. Molnar,P. & England,P. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature 346, 29–34 (1990).

    Article  ADS  Google Scholar 

  6. Small,E. E. & Anderson,R. S. Pleistocene relief production in Laramide mountain ranges, western United States. Geology 26, 123–126 (1998).

    Article  ADS  Google Scholar 

  7. Stuwe,K., White,L. & Brown,R. The influence of eroding topography on steady-state isotherms. Application to fission track analysis. Earth Planet. Sci. Lett. 124, 63–74 (1994).

    Article  ADS  Google Scholar 

  8. Mancktelow,N. S. & Grasemann,B. Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics 270, 167–195 (1997).

    Article  ADS  Google Scholar 

  9. Raymo,M. E. & Ruddiman,W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Small,E. E. & Anderson,R. S. Geomorphically driven Late Cenozoic rock uplift in the Sierra Nevada, California. Science 270, 277–280 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Brozovic,N., Burbank,D. & Meigs,A. Climatic limits on landscape development in the Northwestern Himalaya. Science 276, 571–574 (1997).

    Article  CAS  Google Scholar 

  12. Fielding,E. J., Isacks,B. L., Barazangi,M. & Duncan,C. How flat is Tibet? Geology 22, 163–167 (1994).

    Article  ADS  Google Scholar 

  13. Masek,J. G., Isacks,B. L., Gubbels,T. L. & Fielding,E. J. Erosion and tectonics at the margins of continental plateaus. J. Geophys. Res. 99, 13941–13956 (1994).

    Article  ADS  Google Scholar 

  14. Sklar,L. & Dietrich,W. E. in Rivers Over Rock: Fluvial Processes in Bedrock Channels (eds Tinkler, K. J. & Wohl, E. E.) 237–260 (AGU Press, Washington DC, 1998).

    Book  Google Scholar 

  15. Montgomery,D. R. et al. Distribution of bedrock and alluvial channels in forested mountain drainage basins. Nature 381, 587–589 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Montgomery,D. R. & Buffington,J. M. Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 109, 596–611 (1997).

    Article  ADS  Google Scholar 

  17. Montgomery,D. R. & Dietrich,W. E. Channel initiation and the problem of landscape scale. Science 255, 826–830 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Schmidt,K. M. & Montgomery,D. R. Limits to relief. Science 270, 617–620 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Burbank,D. W. et al. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379, 505–510 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Heimsath,A. M., Dietrich,W. E., Nishizumi,K. & Finkel,R. C. The soil production function and landscape equilibrium. Nature 388, 358–361 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Hovius,N., Stark,C. P. & Allen,P. A. Sediment flux from a mountain belt derived by landslide mapping. Geology 25, 231–234 (1997).

    Article  ADS  Google Scholar 

  22. Hovius,N., Stark,C. P., Chu,H. T. & Lin,J. C. Supply and removal of sediment in a landslide-dominated mountain belt: Central Rang, Taiwan. J. Geol. (in the press).

  23. Tucker,G. E. & Bras,R. L. Hillslope processes, drainage density, and landscape morphology. Wat. Resour. Res. 34, 2751–2764 (1998).

    Article  ADS  Google Scholar 

  24. Howard,A. D. in Rivers Over Rock: Fluvial Processes in Bedrock Channels (eds Tinkler, K. & Wohl, E. E.) 297–319 (AGU Press, Washington DC, 1998).

    Book  Google Scholar 

  25. Rivers Over Rock: Fluvial Processes in Bedrock Channels (eds Tinkler, K. & Wohl, E. E.) 323 (AGU Press, Washington DC, 1998).

  26. Whipple,K. X. & Tucker,G. E. Dynamics of bedrock channels in active orogens: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. 104, 17661–17674 (1999).

    Article  ADS  Google Scholar 

  27. Hack,J. T. Studies of longitudinal steam profiles in Virginia and Maryland. US Geol. Surv. Prof. Pap. 294-B, 97 (1957).

    Google Scholar 

  28. Howard,A. D., Seidl,M. A. & Dietrich,W. E. Modeling fluvial erosion on regional to continental scales. J. Geophys. Res. 99, 13971–13986 (1994).

    Article  ADS  Google Scholar 

  29. Tarboton,D. G., Bras,R. L. & Rodriguez-Iturbe,I. Scaling and elevation in river networks. Wat. Resour. Res. 25, 2037–2051 (1989).

    Article  ADS  Google Scholar 

  30. Montgomery,D. R. & Foufoula-Georgiou,E. Channel network representation using digital elevation models. Wat. Resour. Res. 29, 1178–1191 (1993).

    Article  Google Scholar 

  31. Willgoose,G. A physical explanation for an observed area-slope-elevation relationship for catchments with declining relief. Wat. Resour. Res. 30, 151–159 (1994).

    Article  ADS  Google Scholar 

  32. Snyder,N. P., Whipple,K. X., Tucker,G. E. & Merritts,D. J. Landscape response to tectonic forcing: DEM analysis of stream profiles in the Mendocino triple junction region, northern California. Geol. Soc. Am. Bull. (in the press).

  33. Hallet,B., Hunter,L. & Bogen,J. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob. Planet. Change 12, 213–235 (1996).

    Article  ADS  Google Scholar 

  34. Paterson,W. S. B. The Physics of Glaciers (Pergamon, New York, 1994).

    Google Scholar 

  35. Oerlemans,J. Numerical experiments on large-scale glacial erosion. Z. Gletscherskunde Glazialgeol. 20, 107–126 (1984).

    Google Scholar 

  36. Harbor,J. M. Numerical modeling of the development of U-shaped valleys by glacial erosion. Geol. Soc. Am. Bull. 104, 1364–1375 (1992).

    Article  ADS  Google Scholar 

  37. Andrews,J. T. Glacier power, mass balances, velocities and erosion potential. Z. Geomorphol. N. F. Suppl. Bd. 13, 1–17 (1972).

    Google Scholar 

  38. Small,E. E., Anderson,R. S., Repka,J. L. & Finkel,R. Erosion rates of alpine bedrock summit surfaces deduced from in situ 10Be and 26Al. Earth Planet. Sci. Lett. 150, 413–425 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF (Continental Dynamics) and NASA (K.X.W.). We thank G. Tucker for discussions of relief evolution in active orogens, and D. Burbank, P. Molnar and E. Small for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelin X Whipple.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whipple, K., Kirby, E. & Brocklehurst, S. Geomorphic limits to climate-induced increases in topographic relief. Nature 401, 39–43 (1999). https://doi.org/10.1038/43375

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43375

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing