Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division

Abstract

Ror kinases are a family of orphan receptors with tyrosine kinase activity that are related to muscle specific kinase (MuSK), a receptor tyrosine kinase that assembles acetylcholine receptors at the neuromuscular junction1,2. Although the functions of Ror kinases are unknown, similarities between Ror and MuSK kinases have led to speculation that Ror kinases regulate synaptic development. Here we show that the Caenorhabditis elegans gene cam-1 encodes a member of the Ror kinase family that guides migrating cells and orients the polarity of asymmetric cell divisions and axon outgrowth. We find that tyrosine kinase activity is required for some of the functions of CAM-1, but not for its role in cell migration. CAM-1 is expressed in cells that require its function, and acts cell autonomously in migrating neurons. Overexpression and loss of cam-1 function result in reciprocal cell-migration phenotypes, indicating that levels of CAM-1 influence the final positions of migrating cells. Our results raise the possibility that Ror kinases regulate cell motility and asymmetric cell division in organisms as diverse as nematodes and mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: cam-1 defects.
Figure 2: cam-1 gene.
Figure 3: cam-1–gfp transgene expression.
Figure 4: cam-1 acts cell autonomously in CAN cell migration.
Figure 5: BDU and HSN migration defects in animals lacking or overexpressing cam-1.

Similar content being viewed by others

References

  1. Valenzuela, D. M. et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15, 573–584 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. DeChiara, T. M. et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85, 501–512 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Forrester, W. C. & Garriga, G. Genes necessary for C. elegans cell and growth cone migrations. Development 124, 1831–1843 (1997).

    CAS  PubMed  Google Scholar 

  4. Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Podbilewicz, B. & White, J. G. Cell fusions in the developing epithelial of C. elegans. Dev. Biol. 161, 408–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Sulston, J. E., Albertson, D. G. & Thomson, J. N. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev. Biol. 78, 542–576 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Loer, C. M. & Kenyon, C. J. Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. J. Neurosci. 13, 5407–5417 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Masiakowski, P. & Carroll, R. D. Anovel family of cell surface receptors with tyrosine kinase-like domain. J. Biol. Chem. 267, 26181–26190 (1992).

    CAS  PubMed  Google Scholar 

  9. Wilson, C., Goberdhan, D. C. & Steller, H. Dror, a potential neurotrophic receptor gene, encodes a Drosophila homolog of the vertebrate Ror family of Trk-related receptor tyrosine kinases. Proc. Natl Acad. Sci. USA 90, 7109–7113 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oishi, I. et al. Anovel Drosophila receptor tyrosine kinase expressed specifically in the nervous system. Unique structural features and implication in developmental signaling. J. Biol. Chem. 272, 11916–11923 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Forrester, W. C., Perens, E., Zallen, J. A. & Garriga, G. Identification of Caenorhabditis elegans genes required for neuronal differentiation and migration. Genetics 148, 151–165 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanks, S. K., Quinn, A. M. & Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Henkemeyer, M., West, S. R., Gertler, F. B. & Hoffmann, F. M. Anovel tyrosine kinase independent of Drosophila abl correlates with proper subcellular localization. Cell 63, 949–960 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Apel, E. D., Glass, D. J., Moscoso, L. M., Yancopoulos, G. D. & Sanes, J. R. Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18, 623–635 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Herman, R. K. Analysis of genetic mosaics of the nematode Caneorhabditis elegans. Genetics 108, 165–180 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hedecock, E. M. & Herman, R. K. The ncl-1 gene and genetic mosaics of Caenorhabditis elegans. Genetics 141, 989–1006 (1995).

    Google Scholar 

  17. Miller, L. M., Waring, D. A. & Kim, S. K. Mosaic analysis using a ncl-1 (+) extrachromosomal array reveals that lin-31 acts in the Pn.p cells during Caenorhabditis elegans vulval development. Genetics 143, 1181–1191 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Hawkins, N. & Garriga, G. Asymmetric cell division: from A to Z. Genes Dev. 12, 3625–3638 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. McIntire, S. L., Garriga, G., White, J., Jacobson, D. & Horvitz, H. R. Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron 8, 307–322 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hobert, O. et al. Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron 19, 345–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, X. On global sequence alignment. Comput. Appl. Biosci. 10, 227–235 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Meyer and J. Kaplan for critical reading of this manuscript; K.Kozminski, for microscopy assistance; Y. Kohara for cDNA clones; O. Hobert for the ttx-3-gfp transgene; and C. Walczak for inspiration. This work was supported by a grant from NIH to G.G. and by postdoctoral fellowships from the NIH and the Breast Cancer Research Program of the US Army Medical and Materiel Command to W.C.F.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrester, W., Dell, M., Perens, E. et al. A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature 400, 881–885 (1999). https://doi.org/10.1038/23722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23722

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing