Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The relative influences of nitrogen and phosphorus on oceanic primary production

Abstract

A simple model has the potential to resolve the long-running debate amongst oceanographers over whether nitrogen or phosphorus exerts overall control on oceanic primary production. A representation of the competition between nitrogen-fixing and other phytoplankton is inserted into a two-box global model of the oceanic nitrogen and phosphorus cycles. Homeostatic regulation of both nitrate and phosphate concentrations results, with surface waters more deficient in nitrate than phosphate in the steady state, but with external phosphate inputs controlling longer-term primary production in the global ocean.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: [NO3] versus [PO43−] scatter plot from GEOSECS global data set9.
Figure 2: Structure of model.
Figure 3: Nutrient limitation of the two phytoplankton groups in the model.
Figure 4: Results of model runs.

Similar content being viewed by others

References

  1. Redfield, A. C. in James Johnston Memorial Volume 176–192 (Liverpool Univ. Press, (1934).

    Google Scholar 

  2. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Lamont-Doherty Geological Observatory, New York, (1982).

    Google Scholar 

  3. Libes, S. M. An Introduction to Marine Biogeochemistry (Wiley, New York, (1992).

    Google Scholar 

  4. Schindler, D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Schindler, D. W. Whole-lake eutrophication experiments with phosphorus, nitrogen and carbon. Int. Ver. Theor. Angew. Limnol. Verh. 19, 3221–3231 (1975).

    Google Scholar 

  6. Smith, V. H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221, 669–671 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Hecky, R. E. & Kilham, P. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33, 796–822 (1988).

    ADS  CAS  Google Scholar 

  8. Howarth, R. W., Marino, R. & Cole, J. J. Nitrogen fixation in freshwater, estuarine and marine ecosystems. 2. Biogeochemical controls. Limnol. Oceanogr. 33, 688–701 (1988).

    ADS  CAS  Google Scholar 

  9. Geochemical Oceans Section Study (GEOSECS) data set.(cited (1996) 〈http://ingrid.ldgo.columbia.edu/SOURCES/.GEOSECS〉.

  10. Tyrrell, T. & Law, C. S. Low nitrate:phosphate ratios in the global ocean. Nature 387, 793–796 (1997); Low nitrate: phosphate ocean ratios corrected. Nature 393, 318 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Ryther, J. G. & Dunstan, W. M. Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science 171, 1008–1013 (1971).

    Article  ADS  CAS  Google Scholar 

  12. Codispoti, L. A. in Productivity of the Ocean: Present and Past (eds Berger, W. H., Smetacek, V. S. & Wefer, G.) 377–394 (Dahlem Conf., Wiley, Chichester, UK, (1989).

    Google Scholar 

  13. Codispoti, L. A. Is the ocean losing nitrate? Nature 376, 724 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological CO2pump in the ocean. Nature 387, 272–275 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Smith, S. V. Phosphorus versus nitrogen limitation in the marine environment. Limnol. Oceanogr. 29, 1149–1160 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Broecker, W. S. Akinetic model for the composition of sea water. Quat. Res. 1, 188–207 (1971).

    Article  CAS  Google Scholar 

  17. Jahnke, R. A. in Global Biogeochemical Cycles (eds Butcher, S. S., Charlson, R. J., Orians, G. O. & Wolfe, G. V.) 301–315 (Academic, London, (1992).

    Book  Google Scholar 

  18. Mackenzie, F. T., Ver, L. M., Sabine, C., Lane, M. & Lerman, A. in Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds Wollast, R., Mackenzie, F. T. & Chou, L.) 1–61 (NATO ASI Ser. Vol. 14, Springer, Berlin, (1993).

    Book  Google Scholar 

  19. Jaffe, D. A. in Global Biogeochemical Cycles (eds Butcher, S. S., Charlson, R. J., Orians, G. O. & Wolfe, G. V.) 263–284 (Academic, London, (1992).

    Book  Google Scholar 

  20. Fasham, M. J. R., Ducklow, H. W. & McKelvie, S. M. Anitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48, 591–639 (1990).

    Article  CAS  Google Scholar 

  21. Kimmerer, W. J., Smith, S. V. & Hollibaugh, J. T. Asimple heuristic model of nutrient cycling in an estuary. Estuar. Coast. Shelf Sci. 37, 145–159 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Banse, K. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. & Woodhead, A. D.) 409–439 (Plenum, New York, (1992).

    Book  Google Scholar 

  23. Christensen, J. P., Townsend, D. W. & Montoya, J. P. Water column nutrients and sedimentary denitrification in the Gulf of Maine. Cont. Shelf Res. 16, 489–515 (1996).

    Article  ADS  Google Scholar 

  24. Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralisation determined by nutrient data analysis. Glob. Biogeochem. Cycles 8, 65–80 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Söderström, J. The significance of observed nutrient concentrations in the discussion about nitrogen and phosphorus as limiting nutrients for the primary carbon flux in coastal water ecosystems. Sarsia 81, 81–96 (1996).

    Article  Google Scholar 

  26. Smayda, T. J. Narragansett Bay: variability and change in environment and phytoplankton dynamics over a 23-year period.(Abstr.) Estuaries 8, 86 (1985).

    Google Scholar 

  27. Boddeke, R. & Hagel, P. in Proc. World Fisheries Congress, Theme 1 (ed. Armantrout, N. B.) 290–315 (Oxford & IBH, PVT, New Delhi, (1994).

    Google Scholar 

  28. Nanninga, H. J., Gieskes, W. W. C. & Wolff, W. J. Fish Production in the North Sea and the Influence of Nitrogen and Phosphorus (Literature Study, Dept of Marine Biology, Univ. Groningen, (1997).

    Google Scholar 

  29. Suess, E. Particulate organic carbon flux in the oceans—surface productivity and oxygen utilisation. Nature 288, 260–263 (1980).

    Article  ADS  CAS  Google Scholar 

  30. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–285 (1987).

    Article  ADS  CAS  Google Scholar 

  31. Schlesinger, W. H. Biogeochemistry: an Analysis of Global Change (Academic, San Diego, (1991).

    Google Scholar 

  32. Meybeck, M. in Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds Wollast, R., Mackenzie, F. T. & Chou, L.) 163–193 (NATO ASI Ser. Vol. 14, Springer, Berlin, (1993).

    Book  Google Scholar 

  33. Berner, E. K. & Berner, R. A. Global Environment: Water, Air, and Geochemical Cycles (Prentice-Hall, NJ, (1996).

    MATH  Google Scholar 

  34. Cornell, S., Rendell, A. & Jickells, T. Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376, 243–246 (1995).

    Article  ADS  CAS  Google Scholar 

  35. Duce, R. A. et al. The atmospheric input of trace species to the world ocean. Glob. Biogeochem. Cycles 5, 193–259 (1991).

    Article  ADS  CAS  Google Scholar 

  36. Copin-Montegut, C. & Copin-Montegut, G. Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter. Deep-Sea Res. 30, 31–46 (1983).

    Article  ADS  CAS  Google Scholar 

  37. Ríos, A. F., Fraga, F. & Pérez, F. F. Estimation of coefficients for the calculation of “NO”, “PO” and “CO”, starting from the elemental composition of natural phytoplankton. Scientia Marina 53, 779–784 (1989).

    Google Scholar 

  38. Furnas, M. J. In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J. Plankt. Res. 12, 1117–1151 (1990).

    Article  Google Scholar 

  39. McAllister, C. D., Shah, N. & Strichland, J. D. H. Marine phytoplankton photosynthesis as a function of light intensity: a comparison of methods. J. Fish. Res. Board Can. 21, 159–181 (1964).

    Article  CAS  Google Scholar 

  40. Davies, A. G. & Sleep, J. A. The photosynthetic response of nutrient-depleted dilute cultures of Skeletonema costatum to pulses of ammonium and nitrate; the importance of phosphate. J. Plankt. Res. 11, 141–164 (1981).

    Article  Google Scholar 

  41. Eppley, R. W., Rogers, J. N. & McCarthy, J. J. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14, 912–920 (1969).

    Article  ADS  CAS  Google Scholar 

  42. Goldman, J. C. & Glibert, P. M. in Nitrogen in the Marine Environment (eds Capone, D. G. & Carpenter, E. J.) 233–274 (Academic, New York, (1983).

    Book  Google Scholar 

  43. Barnes, R. S. K. & Hughes, R. N. An Introduction to Marine Ecology 2nd edn (Blackwell Science, Oxford, (1988).

    Google Scholar 

  44. Antoine, D., André, J.-M. & Morel, A. Oceanic primary production, 2. Estimation at global scale from satellite (Coastal Zone Colour Scanner) chlorophyll. Glob. Biogeochem. Cycles 10, 57–69 (1996).

    Article  ADS  CAS  Google Scholar 

  45. Levitus, S., Conkright, M. E., Reid, J. L., Najjar, R. G. & Mantyla, A. Distribution of nitrate, phosphate and silicate in the world oceans. Prog. Oceanogr. 31, 245–273 (1993).

    Article  ADS  Google Scholar 

  46. Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. An estimate of global primary production in the ocean from satellite radiometer data. J. Plank. Res. 17, 1245–1271 (1995).

    Article  Google Scholar 

  47. Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. & Carpenter, E. J. Trichodesmium, a globally significant cyanobacterium. Science 276, 1221–1229 (1997).

    Article  CAS  Google Scholar 

  48. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997).

    Article  ADS  CAS  Google Scholar 

  49. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: How can it occur?. Biogeochemistry 13, 87–115 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

I thank E. Marañón, T. Lenton, A. Martin, D. Wolf-Gladrow, T. Anderson, H.Nanninga, J. Shepherd, P. Holligan, P. Herman, W. Stolte, C. Zonneveld, A. Taylor, A. Watson, L. Partridge, W. Barkmann, S. Smith and R. Toggweiler for discussions and comments on the manuscript, and A. Brice for assistance with computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toby Tyrrell.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999). https://doi.org/10.1038/22941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22941

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing