Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Discovery of the acoustic Faraday effect in superfluid 3He-B

Abstract

Acoustic waves provide a powerful tool for studying the structure of matter. For example, the speed, attenuation and dispersion of acoustic waves can give useful information on molecular forces and the microscopic mechanisms of absorption and scattering of acoustic energy. In solids, both compression and shear waves occur—longitudinal and transverse sound, respectively. But normal liquids do not support shear forces and consequently transverse waves do not propagate in liquids, with one notable exception. In 1957 Landau predicted1 that the quantum-liquid phase of helium-3 might support transverse sound waves at sufficiently low temperatures, the restoring forces for shear waves being supplied by the collective quantum behaviour of the particles in the fluid. Such shear waves will involve displacements of the fluid transverse to the direction of propagation, and so define a polarization direction similar to that of electromagnetic waves. Here we confirm experimentally the existence of transverse sound waves in superfluid 3He-B by observing the rotation of the polarization of these waves in the presence of a magnetic field. This phenomenon is the acoustic analogue of the magneto-optic Faraday effect, whereby the polarization direction of an electromagnetic wave is rotated by a magnetic field applied along the propagation direction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acoustic cavity for transverse sound.
Figure 2: Temperature dependence of the acoustic cavity response.
Figure 3: Magnetic field dependence of the acoustic cavity response.

Similar content being viewed by others

References

  1. Landau, L. D. Oscillations in a Fermi liquid. Sov. Phys. JETP 5, 101–108 (1957).

    MathSciNet  MATH  Google Scholar 

  2. Leggett, A. J. Atheoretical interpretation of the new phases of liquid 3He. Rev. Mod. Phys. 47, 331–414 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Vollhardt, D. & Wölfle, P. The Superfluid Phases of Helium 3 (Taylor & Francis, New York, (1990).

    Book  Google Scholar 

  4. Anderson, P. W. & Brinkman, W. F. in The Helium Liquids (eds Armitage, J. G. M. & Farquhar, I. E.) 315–416 (Academic, New York, (1975).

    Google Scholar 

  5. Wheatley, J. C. Experimental properties of superfluid 3He. Rev. Mod. Phys. 47, 415–470 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Bardeen, J., Cooper, L. N. & Schrieffer, R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Maki, K. Propagation of zero sound in the Balian-Werthamer state. J. Low Temp. Phys. 16, 465–477 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Moores, G. F. & Sauls, J. A. Transverse waves in superfluid 3He-B. J. Low Temp. Phys. 91, 13–37 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Avenel, O., Varoquaux, E. & Ebisawa, H. Field splitting of the new attenuation peak in 3He-B. Phys. Rev. Lett. 45, 1952–1955 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Schopohl, N. & Tewordt, L. Landé factors of collective mode multiplets in 3He-B and coupling strengths to sound waves. J. Low Temp. Phys. 45, 67–90 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Bennett, H. S. & Stern, E. A. Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, A448–A461 (1965).

    Article  Google Scholar 

  12. Lee, Y.et al. High frequency acoustic measurements in liquid 3He-B near the transition temperature. J.Low Temp. Phys. 103, 265–272 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Wölfle, P. & Einzel, D. Transport and relaxation properties of superfluid 3He. II. J. Low Temp. Phys. 32, 39–56 (1978).

    Article  ADS  Google Scholar 

  14. McKenzie, R. H. & Sauls, J. A. in Helium Three (eds Halperin, W. P. & Pitaevskii, L. P.) 255–311 (Elsevier Science, Amsterdam, (1990).

    Book  Google Scholar 

  15. Roach, P. R. & Ketterson, J. B. Observation of transverse zero sound in normal 3He-B. Phys. Rev. Lett. 36, 736–740 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Flowers, E. G., Richardson, R. W. & Williamson, S. J. Transverse zero sound in normal 3He. Phys. Rev. Lett. 37, 309–311 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Flowers, E. G. & Richardson, R. W. Transverse acoustic impedance of normal 3He. Phys. Rev. 17, 1238–1248 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Combescot, M. & Combescot, R. Transverse zero sound propagation in superfluid 3He. Phys. Lett. A 58, 181–182 (1976).

    Article  ADS  Google Scholar 

  19. Maki, K. & Ebisawa, H. Transverse zero sound in superfluid 3He. J. Low Temp. Phys. 26, 627–636 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Kalbfeld, S., Kucera, D. M. & Ketterson, J. B. Observation of an evolving standing-wave pattern involving a transverse disturbance in superfluid 3He. Phys. Rev. Lett. 71, 2264–2267 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Movshovich, R., Varoquaux, E., Kim, N. & Lee, D. M. Splitting of the squashing collective mode of superfluid 3He-B by a magnetic field. Phys. Rev. Lett. 61, 1732–1735 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Schopohl, N., Warnke, M. & Tewordt, L. Effect of gap distortion on the field splitting of collective modes in superfluid 3He-B. Phys. Rev. Lett. 50, 1066–1069 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Shivaram, B. S., Meisel, M. W., Sarma, B. K., Halperin, W. P. & Ketterson, J. B. Nonlinear Zeeman shifts in the collective-mode spectrum of 3He-B. Phys. Rev. Lett. 50, 1070–1072 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Halperin, W. P. & Varoquaux, E. in Helium Three (eds Halperin, W. P. & Pitaevskii, L. P.) 353–522 (Elsevier Science, Amsterdam, (1990).

    Book  Google Scholar 

  25. Movshovich, R., Varoquaux, E., Kim, N. & Lee, D. M. Fivefold splitting of the squashing mode of superfluid 3He-B by a magnetic field. Phys. Rev. B 44, 332–340 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Sauls, J. A. & Serene, J. W. Interaction effects on the Zeeman splitting of collective modes in superfluid 3He-B. Phys. Rev. Lett. 49, 1183–1186 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge contributions from J. Kycia and G. Moores, and support from the National Science Foundation and the NEDO Foundation of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. P. Halperin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Haard, T., Halperin, W. et al. Discovery of the acoustic Faraday effect in superfluid 3He-B. Nature 400, 431–433 (1999). https://doi.org/10.1038/22712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22712

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing