Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient fault-tolerant quantum computing

Abstract

Quantum computing1—the processing of information according to the fundamental laws of physics—offers a means to solve efficiently a small but significant set of classically intractable problems. Quantum computers are based on the controlled manipulation of entangled quantum states, which are extremely sensitive to noise and imprecision; active correction of errors must therefore be implemented without causing loss of coherence. Quantum error-correction theory2,3,4,5,6,7,8,9 has made great progress in this regard, by predicting error-correcting ‘codeword’ quantum states. But the coding is inefficient and requires many quantum bits10,11,12, which results in physically unwieldy fault-tolerant quantum circuits10,11,12,13,14,15,16,17,18. Here I report a general technique for circumventing the trade-off between the achieved noise tolerance and the scale-up in computer size that is required to realize the error correction. I adapt the recovery operation (the process by which noise is suppressed through error detection and correction) to simultaneously correct errors and perform a useful measurement that drives the computation. The result is that a quantum computer need be only an order of magnitude larger than the logic device contained within it. For example, the physical scale-up factor10,11 required to factorize a thousand-digit number is reduced from 1,500 to 22, while preserving the original tolerated gate error rate (10−5) and memory noise per bit (10−7). The difficulty of realizing a useful quantum computer is therefore significantly reduced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Method to measure 010 while simultaneously extracting the syndrome for Z errors.
Figure 2: Fault-tolerant Toffoli gate on three qubits in the same block.

Similar content being viewed by others

References

  1. Steane, A. M. Quantum computing. Rep. Prog. Phys. 61, 117–173 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Steane, A. M. Introduction to quantum error correction. Phil. Trans. R. Soc. Lond. A 356, 1739–1758 ( 1998).

    Article  ADS  MathSciNet  Google Scholar 

  3. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 ( 1995).

    Article  ADS  CAS  Google Scholar 

  4. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098– 1105 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Steane, A. M. Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  7. Knill, E. & Laflamme, R. Atheory of quantum error correcting codes. Phys. Rev. A 55, 900– 911 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Bennett, C. H., DiVencenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3822–3851 ( 1996).

    ADS  MathSciNet  Google Scholar 

  9. Knill, E. & Laflamme, R. Concatenated quantum codes.Preprint quant-ph/9608012 at 〈http://xxx.lanl.gov〉 ( 1996).

  10. Steane, A. M. Space, time, parallelism and noise requirements for reliable quantum computing. Fortschr. Phys. 46, 443– 457 (1998).

    Article  MathSciNet  Google Scholar 

  11. Preskill, J. Reliable quantum computers. Proc. R. Soc. Lond. A 454 , 385–410 (1998).

    Article  ADS  Google Scholar 

  12. Knill, E., Laflamme, R. & Zurek, W. H. Resilient quantum computation: error models and thresholds. Proc. R. Soc. Lond. A 454, 365– 384 (1998).

    Article  ADS  Google Scholar 

  13. Shor, P. W. in Proc. 37th Symp. on Foundations of Computer Science 15– 65 (IEEE Computer Soc. Press, Los Alamitos, CA, (1996 ).

    Google Scholar 

  14. Kitaev, A. Yu. Quantum computations: algorithms and error correction. Russ. Math. Surveys 52, 1191–1249 ( 1997).

    Article  ADS  MathSciNet  Google Scholar 

  15. DiVencenzo, D. P. & Shor, P. W. Fault-tolerant error correction with efficient quantum codes. Phys. Rev. Lett. 77, 3260–3263 ( 1996).

    Article  ADS  Google Scholar 

  16. Steane, A. M. Active stabilisation, quantum computation and quantum state synthesis. Phys. Rev. Lett. 78, 2252–2255 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Knill, E. Group representations, error bases and quantum codes.Preprint quant-ph/9608049 at 〈http://xxx.lanl.gov〉 (1996).

  18. Gottesman, D. Atheory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Gottesman, D. Class of quantum error correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862– 1868 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  20. Calderbank, A. R., Rains, E. M., Shor, P. W. & Sloane, N. J. A. Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–409 ( 1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  21. Steane, A. M. Enlargement of Calderbank Shor Steane quantum codes. IEEE Trans. Inf. Theory (in the press); preprint quant-ph/9802061 at 〈 http://xxx.lanl.gov〉 (1998).

  22. Gottesman, D. Fault-tolerant quantum computation with higher-dimensional systems.Preprint quant-ph/9802007 at 〈http://xxx.lanl.gov〉 ( 1998).

  23. Knill, E. Personal communication.

  24. Beckman, D., Chari, A. N., Devabhaktuni, S. & Preskill, J. Efficient networks for quantum factoring. Phys. Rev. A 54, 1034–1063 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. Vedral, V., Barenco, A. & Ekert, A. Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147–153 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. Steane, A. M. Efficient fault-tolerant quantum computing.Preprint quant-ph/9809054 at 〈http://xxx.lanl.gov〉 (1998).

  27. MacWilliams, F. J. & Sloane, N. J. A. The Theory of Error-correcting Codes(North-Holland, Amsterdam, ( 1996).

  28. Grassl, M., Beth, Th. & Pellizzari, T. Codes for the quantum erasure channel. Phys. Rev. A 56, 33–38 ( 1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Zalka, C. Threshold estimate for fault tolerant quantum computing.Preprint quant-ph/9612028 at 〈http://xxx.lanl.gov〉 (1996).

Download references

Acknowledgements

The author is supported by The Royal Society and St Edmund Hall, Oxford.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steane, A. Efficient fault-tolerant quantum computing. Nature 399, 124–126 (1999). https://doi.org/10.1038/20127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20127

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing