Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional preservation of foot movements in Triassic theropod dinosaurs

Abstract

Dinosaur footprints have been used extensively as biostratigraphic markers, environmental indicators, measures of faunal diversity and evidence of group behaviour1,2,3,4,. Trackways have also been used to estimate locomotor posture, gait and speed6,7,8,9,10,11, but most prints, being shallow impressions of a foot's plantar surface, provide little evidence of the details of limb excursion. Here we describe Late Triassic trackways from East Greenland, made by theropods walking on substrates of different consistency and sinking to variable depths, that preserve three-dimensional records of foot movement. Triassic theropod prints share many features with those of ground-dwelling birds, but also demonstrate significant functional differences in position of the hallux (digit I), foot posture and hindlimb excursion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The spectrum of theropod tracks preserved in the Triassic Fleming Fjord Formation of Greenland (af) is comparable to that produced by an extant bird (the helmeted guineafowl, Numida meleagris) (gj).
Figure 2: Early, middle, and late phases in the formation of a turkey footprint in deep mud.
Figure 3: Three-dimensional computer reconstruction of theropod foot movements producing an elongate print in deep mud.

Similar content being viewed by others

References

  1. Hitchcock, E. Ichnology of New England: A Report on the Sandstone of the Connecticut Valley, especially its Fossil Footmarks, made to the Government of the Commonwealth of Massachusetts (W. White, Boston, (1858).

    Google Scholar 

  2. Lull, R. S. Triassic life of the Connecticut Valley. Conn. State Geol. Nat. Hist. Surv. Bull. 81, 1–336 (1953).

    Google Scholar 

  3. Gillette, D. D. & Lockley, M. G. eds Dinosaur Tracks and Traces (Cambridge University Press, Cambridge, (1989).

    Google Scholar 

  4. Thulborn, T. Dinosaur Tracks (Chapman and Hall, London, (1990).

    Book  Google Scholar 

  5. Lockley, M. G. Tracking Dinosaurs: A New Look at an Ancient World (Cambridge University Press, Cambridge, (1991).

    Google Scholar 

  6. Alexander, R. McN. Estimates of speeds of dinosaurs. Nature 261, 129–130 (1976).

    Article  ADS  Google Scholar 

  7. Coombs, W. P. J Swimming ability of carnivorous dinosaurs. Science 207, 1198–1200 (1980).

    Article  ADS  Google Scholar 

  8. Farlow, J. O. Estimates of dinosaur speeds from a new trackway site in Texas. Nature 294, 747–748 (1981).

    Article  ADS  Google Scholar 

  9. Thulborn, R. A. Speeds and gaits of dinosaurs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 38, 227–256 (1982).

    Article  Google Scholar 

  10. Thulborn, R. A. & Wade, M. Dinosaur trackways in the Winton Formation (mid-Cretaceous) of Queensland. Mem. Qd. Mus. 21, 413–517 (1984).

    Google Scholar 

  11. Padian, K. & Olsen, P. E. in Dinosaur Tracks and Traces (eds Gillette, D. D. & Lockley, M. G.) 231–241 (Cambridge University Press, Cambridge, (1989).

    Google Scholar 

  12. Jenkins, F. A. J et al. Late Triassic continental vertebrates and depositional environments of the Fleming Fjord Formation, Jameson Land, East Greenland. Meddr. Grønland Geoscience 32, 1–25 (1994).

    Google Scholar 

  13. Clemmensen, L. B., Kent, D. V. & Jenkins, F. A. J ALate Triassic lake system in East Greenland: facies, depositional cycles and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 140, 135–159 (1998).

    Article  Google Scholar 

  14. Lull, R. S. Fossil footprints of the Jura-Trias of North America. Mem. Bos. Soc. Nat. Hist. 1904, 461–557 (1904).

    Google Scholar 

  15. Olsen, P. E. & Galton, P. M. Areview of the reptile and amphibian assemblages from the Stormberg of southern Africa, with special emphasis on the footprints and the age of the Stormberg. Palaeont. Afr. 25, 87–110 (1984).

    Google Scholar 

  16. Olsen, P. E., Smith, J. B. & McDonald, N. G. Type material of the type species of the classic theropod footprint genera Eubrontes, Anchisauripus, and Grallator (Early Jurassic, Hartford and Deerfield Basins, Connecticut and Massachusetts, U.S.A.). J. Vert. Paleo. 18, 586–601 (1998).

    Article  Google Scholar 

  17. Baird, D. Triassic reptile footprint faunules from Milford, New Jersey. Bull. Mus. Comp. Zool. 117, 449–520 (1957).

    Google Scholar 

  18. Sereno, P. C., Forster, C. A., Rogers, R. R. & Monetta, A. M. Primitive dinosaur skeleton from Argentina and the early evolution of Dinosauria. Nature 361, 64–66 (1993).

    Article  ADS  Google Scholar 

  19. Novas, F. E. New information on the systematics and postcranial skeleton of Herrerasaurus ischigualastensis (Theropoda: Herrerasauridae) from the Ischigualasto Formation (Upper Triassic) of Argentina. J. Vert. Paleo. 13, 400–423 (1993).

    Article  Google Scholar 

  20. Colbert, E. H. The Triassic dinosaur Coelophysis. Mus. N. Ariz. Bull. 57, 1–160 (1989).

    Google Scholar 

  21. Raath, M. A. Anew coelurosaurian dinosaur from the Forest Sandstone of Rhodesia. Arnoldia 4, 1–25 (1969).

    Google Scholar 

  22. Sereno, P. C. & Wild, R. Procompsognathus : theropod, “thecodont” or both? J. Vert. Paleo. 12, 435–458 (1992).

    Article  Google Scholar 

  23. Camp, C. L. Anew type of small bipedal dinosaur from the Navajo Sandstone of Arizona. Univ. Cal. Pub. Geol. Sci. 24, 39–56 (1936).

    Google Scholar 

  24. Welles, S. P. Dilophosaurus wetherilli (Dinosauria, Theropoda) osteology and comparisons. Palaeontogr. Abt. A 185, 85–180 (1984).

    Google Scholar 

  25. Nopcsa, F. On the origin of flight in birds. Proc. Zool. Soc. Lond. 1923, 463–477 (1923).

    Google Scholar 

  26. Thulborn, R. A. The avian relationships of Archaeopteryx, and the origin of birds. Zool. J. Linn. Soc. 82, 119–158 (1984).

    Article  Google Scholar 

  27. Gauthier, J. Saurischian monophyly and the origin of birds. Mem. Calif. Acad. Sci. 8, 1–55 (1986).

    Google Scholar 

  28. Gatesy, S. M. Hind limb movements of the American alligator (Alligator mississippiensis) and postural grades. J. Zool. (Lond.) 224, 577–588 (1991).

    Article  Google Scholar 

  29. Tarsitano, S. Stance and gait in theropod dinosaurs. Acta Palaeontol. Pol. 28, 251–264 (1983).

    Google Scholar 

  30. Gatesy, S. M. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology 16, 170–186 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. B. Clemmensen, the Danish Polar Center and the Commission for Scientific Research in Greenland for support of field work, L. L. Meszoly for rendering Fig. 1, M. A. Norell and A. R. Davidson for access to Coelophysis bauri (AMNH 7226), Alias/Wavefront for software support, and J. O. Farlow, J. R. Hutchinson, M. G. Lockley, P. E. Olsen, K. Padian, D. Norman and R. A. Thulborn for critical advice. This work was supported by grants from the National Science Foundation, the Carlsberg Foundation, and the Putnam Expeditionary Fund of Harvard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Gatesy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatesy, S., Middleton, K., Jr, F. et al. Three-dimensional preservation of foot movements in Triassic theropod dinosaurs. Nature 399, 141–144 (1999). https://doi.org/10.1038/20167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20167

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing