Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of mesoscopic vortex physics using micromechanical oscillators

Abstract

It has long been known that magnetic fields penetrate type II superconductors in the form of quantized superconducting vortices. Most recent research in this area has, however, focused on the collective properties of large numbers of strongly interacting vortices1,2: the study of vortex physics on the mesoscopic scale (a regime in which a small number of vortices are confined in a small volume) has in general been hampered by the lack of suitable experimental probes. Here we use a silicon micromachined mechanical resonator to resolve the dynamics of single vortices in micrometre-sized samples of the superconductor 2H-NbSe2. Measurements at and slightly above the lower critical field, H c1 (the field at which magnetic flux first penetrates the superconductor), where only a few vortices are present, reveal a rich spectrum of sharp, irreversible vortex rearrangements. At higher fields, where tens of vortices are present, the sharp features become reversible, suggesting that we are resolving a new regime of vortex dynamics in which the detailed configuration of pinning sites, sample geometry and vortex interactions produce significant changes in the measurable vortex resonse. This behaviour can be described within the framework of interacting vortex linesin a ‘1 + 1’-dimensional random potential—an important (but largely untested) theoretical model for disorder-dominated systems11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron micrograph of a high-Q mechanical oscillator with a hexagonal single crystal of the traditional superconductor .
Figure 2: Temperature dependence of the oscillator resonant frequency (a) and amplitude (b) for a typical zero-field-cooling/field-coo. ling (FC) experiment.
Figure 3: Three different field dependences of the resonant frequency at the fixed temperatures, 6.9 K (a), 6.65 K (b) and 6.8 K (c).

Similar content being viewed by others

References

  1. Safar, H. et al . Experimental evidence for a 1st-order vortex-lattice-melting transition in untwinned single-crystal YBa2Cu3O7. Phys. Rev. Lett. 69, 824–827 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Brézin, E., Nelson, D. R. & Thiaville, A. Fluctuation effects near H c2in type-II superconductors. Phys. Rev. B 31, 7124–7132 (1985).

    Article  ADS  Google Scholar 

  3. Kleiman, R. N., Agnolet, G. & Biship, D. J. Two-level systems observed in the mechanical properties of single-crystal silicon at low temperatures. Phys. Rev. Lett. 59, 2079–2082 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Kleiman, R. N., Kaminsky, G. K., Reppy, J. D., Pindak, R. & Bishop, D. J. Single-crystal silicon high-Q torsional oscillators. Rev. Sci. Instrum. 56, 2088–2091 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Bishop, D. J. & Reppy, J. D. Study of the superfluid transition in two-dimensional 4He films. Phys. Rev. Lett. 40, 1727–1730 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Bolle, C. A., de la Cruz, F., Gammel, P. L., Waszczak, J. V. & Bishop, D. J. Observation of tilt induced orientational order in the magnetic flux lattice in 2H-NbSe2. Phys. Rev. Lett. 71, 4039–4042 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Duarte, A. et al . Dynamically induced disorder in the vortex lattice of 2H-NbSe2. Phys. Rev. B 53, 11336–11339 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Yaron, U. et al . Neutron diffraction studies of flowing and pinned magnetic flux lattices in 2H-NbSe2. Phys. Rev. Lett. 73, 2748–2751 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Akkermans, E., Montambaux, Pichard, J. I. & Zinn-Justin, J. (eds) Mesoscopic Quantum Physics(North-Holland, Amsterdam, (1994).

    Google Scholar 

  10. de Trey, P., Gygax, S. & Jan, J.-P. Anisotropy of the Ginzburg–Landau parameter κ in NbSe2. J. Low Temp. Phys. 11, 421–434 (1973).

    Article  ADS  CAS  Google Scholar 

  11. Nelson, D. R. Vortex entanglement in high-T csuperconductors. Phys. Rev. Lett. 60, 1973–1976 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Natterman, T. & Lipowsky, R. Comment on vortex entanglement in high-T csuperconductors. Phys. Rev. Lett. 61, 2508 (1988).

    Article  ADS  Google Scholar 

  13. Huse, D. A., Henley, C. L. & Fisher, D. S. Response on comment on roughening by impurities at finite temperature. Phys. Rev. Lett. 55, 2924 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Forster, D., Nelson, D. R. & Stephen, M. J. Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  15. Halpin-Healy, T. & Zhang, Y. Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215–415 (1995).

    Article  ADS  Google Scholar 

  16. Hwa, T., Nelson, D. R. & Vinokur, V. M. Flux-line pinning by competing disorders. Phys. Rev. B 48, 1167–1174 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Hwa, T. & Lässig, M. Similarity detection and localization. Phys. Rev. Lett. 76, 2591–2594 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Hwa, T. & Fisher, D. S. Vortex glass phase and universal susceptibility variations in planar arrays of flux lines. Phys. Rev. Lett. 72, 2466–2469 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Fisher, M. P. A. Vortex-glass superconductivity: a possible new phase in bulk high-T coxides. Phys. Rev. Lett. 62, 1415–1418 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Blatter, T. Hwa, V. Kogan and V. Vinokur for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Bishop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolle, C., Aksyuk, V., Pardo, F. et al. Observation of mesoscopic vortex physics using micromechanical oscillators. Nature 399, 43–46 (1999). https://doi.org/10.1038/19924

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19924

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing