Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy

Abstract

Atomic force microscopy (AFM)1, 2 has been used to measure the strength of bonds between biological receptor molecules and their ligands3,4,5,6. But for weak noncovalent bonds, a dynamic spectrum of bond strengths is predicted as the loading rate is altered, with the measured strength being governed by the prominent barriers traversed in the energy landscape along the force-driven bond-dissociation pathway7. In other words, the pioneering early AFM measurements represent only a single point in a continuous spectrum of bond strengths, because theory predicts that these will depend on the rate at which the load is applied. Here we report the strength spectra for the bonds between streptavidin (oravidin) and biotin8—the prototype of receptor–ligand interactions used in earlier AFM studies3,4,5, and which have been modelled by molecular dynamics9, 10. We have probed bond formation over six orders of magnitude in loading rate, and find that the bond survival time diminished from about 1 min to 0.001 s with increasing loading rate over this range. The bond strength, meanwhile, increased from about 5 pN to 170 pN. Thus, although they are among the strongest noncovalent linkages in biology (affinity of 1013 to 1015 M−1)8, 11, these bonds in fact appear strong or weak depending on how fast they are loaded. We are also able to relate the activation barriers derived from our strength spectra to the shape of the energy landscape derived from simulations of the biotin–avidin complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The spring in the biomembrane force probe BFP is a pressurized membrane capsule12.
Figure 2: BFP tip–substrate distance and force versus time for cycles of approach–touch–separation with formation and rupture of a bond.
Figure 3: Biotin–streptavidin bond strengths.
Figure 4: Conceptual and real (MD) energy landscapes traversed along a molecular reaction coordinate under force.

Similar content being viewed by others

References

  1. Binnig, G., Quate, C. F. & Gerber, C. H. Atomic force microscopy. Phys. Rev. Lett. 56, 930–933 ( 1986).

    Article  ADS  CAS  Google Scholar 

  2. Drake, B. et al. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586– 1589 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Lee, G. U., Kidwell, D. A. & Colton, R. J. Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10, 354–357 (1994).

    Article  CAS  Google Scholar 

  4. Florin, E.-L., Moy, V. T. & Gaub, H. E. Adhesive forces between individual ligand receptor pairs. Science 264, 415–417 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Moy, V. T., Florin, E.-L. & Gaub, H. E. Intermolecular forces and energies between ligands and receptors. Science 264, 257– 259 (1994).

    Article  ADS  Google Scholar 

  6. Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl Acad. Sci. USA 93, 3477– 3481 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541– 1555 (1997).

    Article  CAS  Google Scholar 

  8. Green, N. M. Avidin. Adv. Protein Chem. 29, 85– 133 (1975).

    Article  CAS  Google Scholar 

  9. Grubmuller, H., Heymann, B. & Tavan, P. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271, 997–999 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y. & Schulten, K. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72, 1568–1581 (1997).

    Article  CAS  Google Scholar 

  11. Chilkoti, A. & Stayton, P. S. Molecular origins of the slow streptavidin-biotin dissociation kinetics. J.Am. Chem. Soc. 117, 10622–10628 (1995).

    Article  CAS  Google Scholar 

  12. Evans, E., Ritchie, K. & Merkel, R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68, 2580–2587 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. & Salemme, F. R. Structural origins of high-affinity biotin binding to streptavidin. Science 243, 85–88 ( 1989).

    Article  ADS  CAS  Google Scholar 

  15. Livnah, O., Bayer, E. A., Wilchek, M. & Sussman, J. L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc. Natl Acad. Sci. USA 90, 5076– 5080 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Freitag, S., Le Trong, I., Klumb, L., Stayton, P. S. & Stenkamp, R. E. Structural studies of the streptavidin binding loop. Protein Sci. 6, 1157–1166 (1997).

    Article  CAS  Google Scholar 

  17. Chu, V., Freitag, S., Le Trong, I., Stenkamp, R. E. & Stayton, P. S. Thermodynamic and structural consequences of flexible loop deletion by circular permutation in the streptavidin-biotin system. Protein Sci. 7, 848– 859 (1998).

    Article  CAS  Google Scholar 

  18. Alon, R., Hammer, D. A. & Springer, T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374, 539–542 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Brunk, D. K., Goetz, D. J. & Hammer, D. A. Sialyl Lewisx /E-selectin-mediated rolling in a cell-free system. Biophys. J. 71, 2902–2907 (1996).

    Article  CAS  Google Scholar 

  20. Rief, M., Gautel, M., Osterhelt, F., Fermandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  21. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernandez, J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 ( 1998).

    Article  ADS  CAS  Google Scholar 

  22. Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (Utrecht) 7, 284– 304 (1940).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Hanggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–342 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  24. Wong, S. S., Joselivich, E., Woolley, A. T., Cheung, C. L. & Lieber, C. M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52–55 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Chilkoti, C. Cantor and the group of K. Schulten for helpful discussions. The work was supported by USPHS National Institutes of Health, Medical Research Council of Canada, and the Canadian Institute for Advanced Research Program in Science of Soft Surfaces and Interfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkel, R., Nassoy, P., Leung, A. et al. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999). https://doi.org/10.1038/16219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16219

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing