Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The fate of subducted basaltic crust in the Earth's lower mantle

Abstract

The subduction of oceanic lithosphere into the Earth's deep interior is thought to drive convection and create chemical heterogeneity in the mantle. The oceanic lithosphere as a whole, however, might not subduct uniformly: the fate of basaltic crust may differ from that of the underlying peridotite layer because of differences in chemistry, density and melting temperature. It has been suggested that subducted basaltic crust may in fact become buoyant at the mantle's 660-km discontinuity, remaining buoyant to depths of at least 800 km, and therefore might be gravitationally trapped at this boundary to form a garnetite layer1, 2. Here we report the phase relations and melting temperatures of natural mid-ocean ridge basalt at pressures up to 64 GPa (corresponding to 1,500 km depth). We find that the former basaltic crust is no longer buoyant when it transforms to a perovskitite lithology at about 720 km depth, and that this transition boundary has a positive pressure–temperature slope, in contrast to the negative slope of the transition boundary in peridotite. We therefore predict that basaltic crust with perovskitite lithology would gravitationally sink into the deep mantle. Our melting data suggest that, at the base of the lower mantle, the former basaltic crust would be partially molten if temperatures there were to exceed 4,000 K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase relations in MORB composition up to 27 GPa.
Figure 2: Comparison of zero-pressure density changes in MORB (solid line) and pyrolite (dashed line).
Figure 3: Melting curve of MORB extrapolated to the core–mantle boundary using the melting relationships of Simon22 (S) and Kraut and Kennedy23 (KK).

Similar content being viewed by others

References

  1. Irifune, T. & Ringwood, A. E. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet. Sci. Lett. 117, 101–110 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Ringwood, A. E. Role of the transition zone and 660 km discontinuity in mantle dynamics. Phys. Earth Planet. Inter. 86, 5–24 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Bertka, C. M. & Fei, Y. Mineralogy of Matian interior up to core-mantle boundary pressures. J. Geophys. Res. 102, 5251–5264 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Irifune, T., Ringwood, A. E. & Hibberson, W. O. Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet. Sci. Lett. 126, 351–368 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Irifune, T., Koizumi, T. & Ando, J. An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3O12. Phys. Earth Planet. Inter. 96, 147–157 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Hirose, K. & Fei, Y. Majorite-perovskite transformation on the join MgSiO3Mg3Al2Si3O12and its role in the dynamics at the 660-km discontinuity. Phys. Earth Planet. Inter. (submitted).

  7. Kesson, S. E., Fitz Gerald, J. D. & Shelley, J. M. Mineralogy and dynamics of a pyrolite lower mantle. Nature 393, 252–255 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Faust, J. & Knittle, E. The stability and equation of state of majoritic garnet synthesised from natural basalt at mantle conditions. Geophys. Res. Lett. 23, 3377–3380 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Kesson, S. E., Fitz Gerald, J. D. & Shelley, J. M. G. Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures. Nature 372, 767–769 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Irifune, T. & Ringwood, A. E. Phase transformation in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab. Earth Planet. Sci. Let. 86, 365–376 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Shen, G., Mao, H. & Hemley, R. J. Laser-heated diamond anvil cell technique: double-sided heating with multimode Nd:YAG laser. Proc. ISAM '96 149–152 (1996).

  12. Yasuda, A., Fujii, T. & Kurita, K. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications for the behavior of subducted oceanic crust in the mantle. J. Geophys. Res. 99, 9401–9414 (1994).

    Article  ADS  Google Scholar 

  13. Zerr, A. & Boehler, R. Melting of (Mg,Fe)SiO3-perovskite to 625 kilobars: indication of a high melting temperature in the lower mantle. Science 262, 553–555 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Shen, G. & Lazor, P. Measurement of melting temperatures of some minerals under lower mantle pressures. J. Geophys. Res. 100, 17699–17713 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Zerr, A., Serghiou, G. & Boehler, R. Melting of CaSiO3perovskite to 430 kbar and first in-situ measurements of lower mantle eutectic temperatures. Geophys. Res. Lett. 24, 909–912 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Presnall, D. C. & Gasparik, T. Melting of enstatite (MgSiO3) from 10 to 16.5 GPa and the forsterite (Mg2SiO4)-majorite (MgSiO3) eutectic at 16.5 GPa: implications for the origin of the mantle. J. Geophys. Res. 95, 15771–15777 (1990).

    Article  ADS  Google Scholar 

  17. Zerr, A., Diegeler, A. & Boehler, R. Solidus of Earth's deep mantle. Science 281, 243–246 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Kendall, J. M. & Silver, P. Constraints from seismic anisotropy in the lowermost mantle. Nature 381, 409–412 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Kendall, J. M. & Silver, P. Investigating causes of D″ anisotropy. AGU Monogr. (in the press).

  20. Williams, Q. & Garnero, E. Seismic evidence for partial melt at the base of Earth's mantle. Science 273, 1528–1530 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Revenaugh, J. S. & Meyer, R. Seismic evidence of partial melt within a possibly ubiquitous low velocity layer at the base of the mantle. Science 277, 670–673 (1997).

    Article  CAS  Google Scholar 

  22. Simon, F. E. & Glatzel, G. Fusion-pressure curve. Z. Anorg. Allg. Chem. 178, 309 (1929).

    Article  CAS  Google Scholar 

  23. Kraut, E. A. & Kennedy, G. C. New melting law at high pressures. Phys. Rev. Lett. 16, 608–609 (1966).

    Article  ADS  CAS  Google Scholar 

  24. Boehler, R. Melting temperature of the Earth's mantle and core: Earth's thermal structure. Annu. Rev. Earth Planet. Sci. 15–40 (1996).

  25. Mao, H. K., Chen, L. C., Hemley, R. J., Jephcoat, A. P. & Wu, Y. Stability and equation of state of CaSiO3-perovskite to 134 GPa. J. Geophys. Res. 94, 17889–17894 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank W. Minarik, J. Konzett, G. Shen and S. Shieh for discussions. This research was supported by the NSF, the Carnegie Institution of Washington, and Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingwei Fei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirose, K., Fei, Y., Ma, Y. et al. The fate of subducted basaltic crust in the Earth's lower mantle. Nature 397, 53–56 (1999). https://doi.org/10.1038/16225

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16225

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing