Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design and self-assembly of two-dimensional DNA crystals

Abstract

Molecular self-assembly presents a ‘bottom-up’ approach to the fabrication of objects specified with nanometre precision. DNA molecular structures and intermolecular interactions are particularly amenable to the design and synthesis of complex molecular objects. We report the design and observation of two-dimensional crystalline forms of DNA that self-assemble from synthetic DNA double-crossover molecules. Intermolecular interactions between the structural units are programmed by the design of ‘sticky ends’ that associate according to Watson–Crick complementarity, enabling us to create specific periodic patterns on the nanometre scale. The patterned crystals have been visualized by atomic force microscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of DX molecular structure and arrangement into 2-D lattices.
Figure 2: Autoradiogram of a 4% denaturing polyacrylamide gel showing the product after assembly of 2-D lattice DAE-O (AB), ligation to form long covalent strands, and denaturing to separate the strands. Lane 1 contains a ladder or markers at 100-base intervals.
Figure 3: AFM images of two-unit lattices.
Figure 4: AFM images showing large crystals and modifications of lattice periodicity and surface features.

Similar content being viewed by others

References

  1. Liu, B., Leontis, N. B. & Seeman, N. C. Bulged 3-arm DNA branched junctions as components for nanoconstruction. Nanobiology 3, 177–188 (1994).

    CAS  Google Scholar 

  2. Seeman, N. C. Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  3. Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl Acad. Sci. USA 70, 3240–3244 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Qiu, H., Dewan, J. & Seeman, N. C. ADNA decamer with a sticky end: The crystal structure of d-CGACGATCGT. J. Mol. Biol. 267, 881–898 (1997).

    Article  CAS  Google Scholar 

  5. Ma, R.-I., Kallenbach, N. R., Sheardy, R. D., Petrillo, M. L. & Seeman, N. C. Three-arm nucleic acid junctions are flexible. Nucleic Acids Res. 14, 9745–9753 (1986).

    Article  CAS  Google Scholar 

  6. Petrillo, M. L. et al. The ligation and flexibility of four-arm DNA junctions. Biopolymers 27, 1337–1352 (1988).

    Article  CAS  Google Scholar 

  7. Fu, T.-J. & Seeman, N. C. DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993).

    Article  CAS  Google Scholar 

  8. Schwacha, A. & Kleckner, N. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83, 783–791 (1995).

    Article  CAS  Google Scholar 

  9. Li, X., Yang, X., Qi, J. & Seeman, N. C. Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 118, 6131–6140 (1996).

    Article  CAS  Google Scholar 

  10. Winfree, E. in DNA Based Computers: Proceedings of a DIMACS Workshop, April 4, 1995, Princeton University (eds Lipton, R. J. & Baum, E. B.) 199–221 (American Mathematical Society, Providence, RI, (1996)).

    Book  Google Scholar 

  11. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Grünbaum, B. & Shephard, G. C. Tilings and Patterns (Freeman, New York, (1986)).

    MATH  Google Scholar 

  13. Wang, H. in Proc. Symp. Math. Theory of Automata 23–56 (Polytechnic, New York, (1963)).

    Google Scholar 

  14. Winfree, E., Yang, X. & Seeman, N. C. in Proceedings of the 2nd DIMACS Meeting on DNA Based Computers, Princeton University, June 20–12, 1996 (American Mathematical Society, Providence, RI, in the press).

  15. Reif, J. in Proceedings of the 3rd DIMACS Meeting on DNA Based Computers, University of Pennsylvania, June 23–25, 1997 (American Mathematical Society, Providence, RI, in the press).

  16. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Wang, J. C. Helical repeat of DNA in solution. Proc. Natl Acad. Sci. USA 76, 200–203 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Rhodes, D. & Klug, A. Helical periodicity of DNA determined by enzyme digestion. Nature 286, 573–578 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Seeman, N. C. De novo design of sequences for nucleic acid structural engineering. J. Biomol. Struct. Dyns 8, 573–581 (1990).

    Article  CAS  Google Scholar 

  20. Yue, K. & Dill, K. A. Inverse protein folding problem—designing polymer sequences. Proc. Natl Acad. Sci. USA 89, 4163–4167 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Sun, S., Brem, R., Chan, H. S. & Dill, K. A. Designing amino acid sequences to fold with good hydrophobic cores. Prot. Engng 9, 1205–1213 (1996).

    Google Scholar 

  22. SantaLucia, J., Allawi, H. T. & Seneviratne, A. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35, 3555–3562 (1996).

    Article  CAS  Google Scholar 

  23. Ouporov, I. V. & Leontis, N. B. Refinement of the solution structure of a branched DNA three-way junction. Biophys. J. 68, 266–274 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Hansma, H. G. et al. Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256, 1180–1184 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Shaiu, W.-L., Larson, D. D., Vesenka, J. & Henderson, E. Atomic force microscopy of oriented linear DNA molecules labelled with 5 nm gold spheres. Nucleic Acids Res. 21, 99–103 (1993).

    Article  CAS  Google Scholar 

  26. Shaiu, W.-L., Vesenka, J., Jondle, D., Henderson, E. & Larson, D. D. Visualization of circular DNA molecules labelled with colloidal gold spheres using atomic force microscopy. J. Vac. Sci. Tech. A 11, 820–823 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Niemeyer, C. M., Sano, T., Smith, C. L. & Cantor, C. R. Oligonucleotide-directed self-assembly of proteins. Nucleic Acids Res. 22, 5530–5539 (1994).

    Article  CAS  Google Scholar 

  29. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. ADNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  ADS  CAS  Google Scholar 

  31. Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).

    Article  ADS  CAS  Google Scholar 

  32. Breaker, R. R. & Joyce, G. F. ADNA enzyme that cleaves RNA. Chem. Biol. 1, 223–229 (1994).

    Article  CAS  Google Scholar 

  33. Chen, J. & Seeman, N. C. The synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    Article  ADS  CAS  Google Scholar 

  34. Zhang, Y. & Seeman, N. C. The construction of a DNA truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994).

    Article  CAS  Google Scholar 

  35. Joannopolous, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals: Moulding the Flow of Light (Princeton University Press, Princeton, (1995)).

    Google Scholar 

  36. Ribeiro, F. R. et al. Structure–activity relationships in zeolites. J. Mol. Cat. A: Chem. 96, 245–270 (1996).

    Google Scholar 

  37. Robinson, B. H. & Seeman, N. C. The design of a biochip: A self-assembling molecular-scale memory device. Prot. Engng 1, 295–300 (1987).

    Article  CAS  Google Scholar 

  38. Haddon, R. C. & Lamola, A. A. The molecular electronic defice and the biochip computer: present status. Proc. Natl Acad. Sci. USA 82, 1874–1878 (1985).

    Article  ADS  CAS  Google Scholar 

  39. Carter, E. S. & Tung, C.-S. NAMOT2—a redesigned nucleic acid modelling tool: construction of non-canonical DNA structures. CABIOS 12, 25–30 (1996).

    CAS  PubMed  Google Scholar 

  40. Vainshtein, B. K. Modern Crystallography, 1: Fundamentals of Crystals (Springer, New York, (1994)).

    Google Scholar 

Download references

Acknowledgements

We thank J. Hopfield, S. Roweis, S. Mahajan, C. Brody, L. Adleman and P. Rothemund for discussion; J. Abelson and his group for use of his laboratory and for technical advice; A. Segal, E. Rabani and R. Moision for instruction and advice on AFM imaging; the Beckman Institute Molecular Materials Resource Center for assistance and use of their AFM facilities; F. Furuya for help with labelling; and M. Yoder, V. Morozov, D. Stokes, M. Simon and J. Wall for assistance in early attempts to visualize DNA lattices. The research at Caltech has been supported by the National Institute for Mental Health, General Motors' Technology Research Partnerships program, and by the Center for Neuromorphic Systems Engineering as a part of the NSF Engineering Research Center Program. The research at NYU has been supported by the Office of Naval Research, the National Institute of General Medical Sciences, and the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Winfree.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winfree, E., Liu, F., Wenzler, L. et al. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998). https://doi.org/10.1038/28998

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28998

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing