Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tests of quantum gravity from observations of γ-ray bursts

Abstract

The recent confirmation that at least some γ-ray bursts originate at cosmological distances1,2,3,4 suggests that the radiation from them could be used to probe some of the fundamental laws of physics. Here we show that γ-ray bursts will be sensitive to an energy dispersion predicted by some approaches to quantum gravity. Many of the bursts have structure on relatively rapid timescales5, which means that in principle it is possible to look for energy-dependent dispersion of the radiation, manifested in the arrival times of the photons, if several different energy bands are observed simultaneously. A simple estimate indicates that, because of their high energies and distant origin, observations of these bursts should be sensitive to a dispersion scale that is comparable to the Planck energy scale (1019 GeV), which is sufficient to test theories of quantum gravity. Such observations are already possible using existing γ-ray burst detectors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. van Paradis, J. et al. Transient optical emission from the error box of the γ-ray burst of 28 February 1997. Nature 386, 686–689 (1997).

    Article  ADS  Google Scholar 

  2. Groot, P. J. et al. IAU Circ.No. 6676 (1997).

    Google Scholar 

  3. Metzger, M. L. et al. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997. Nature 387, 878–880 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Metzger, M. L. et al. IAU Circ.No. 6676 (1997).

    Google Scholar 

  5. Fishman, G. J. & Meegan, C. A. Gamma-ray bursts. Annu. Rev. Astron. Astrophys. 33, 415–458 (1995).

    Article  ADS  Google Scholar 

  6. Latorre, J. I., Pascual, P. & Tarrach, R. Speed of light in nontrivial vacua. Nucl. Phys. B 437, 60–82 (1995).

    Article  ADS  Google Scholar 

  7. Ellis, J., Mavromatos, N. & Nanopoulos, D. V. String theory modifies quantum mechanics. Phys. Lett. B 293, 37–48 (1992).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Garay, L. J. Space-time foam as a quantum thermal bath. Phys. Rev. Lett.(submitted); also as preprint gr-qc/9801024.

  9. Ellis, J., Hagelin, J. S., Nanopoulos, D. V. & Srednicki, M. Search for violations of quantum mechanics. Nucl. Phys. B 241, 381–405 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  10. Ellis, J., Lopez, J., Mavromatos, N. & Nanopoulos, D. V. Precision tests of CPT symmetry and quantum mechanics in the neutral kaon system. Phys. Rev. D 53, 3846–3870 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Huet, P. & Peskin, M. E. Violation of CPT and quantum mechanics in the K0− ¯0system. Nucl. Phys. B 434, 3–38 (1995).

    Article  ADS  Google Scholar 

  12. Adler, R. et al. Tests of CPT symmetry and quantum mechanics with experinental data from CPLEAR. Phys. Lett. B 364, 239–245 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Antoniadis, I., Bachas, C., Ellis, J. & Nanopoulos, D. V. Comments on cosmological string solutions. Phys. Lett. B 257, 278–284 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Lukierski, J., Nowicki, A. & Ruegg, H. Classical and quantum-mechanics of free κ-relativistic systems. Ann. Phys. 243, 90–116 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Amelino-Camelia, G. Enlarged bound on the measurability of distances and quantum κ-Poincaré group. Phys. Lett. B 392, 283–286 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. 't Hooft, G. Quantization of point particles in (2 + 1)-dimensional gravity and space-time discreteness. Class. Quant. Grav. 13, 1023–1039 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Amelino-Camelia, G., Ellis, J., Mavromatos, N. E. & Nanopoulos, D. V. Distance measurement and wave dispersion in a Liouville string approach to quantum gravity. Int. J. Mod. Phys. A 12, 607–623 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  18. Amelino-Camelia, G. Limits on the measurability of space-time distances in the semi-classical approximation of quantum gravity. Mod. Phys. Lett. A 9, 3415–3422 (1994).

    Article  ADS  Google Scholar 

  19. Baring, M. G. Gamma-ray bursts above 1 GeV.in Towards a Major Atmospheric Cerenkov Detector(ed. de Jager, O. C.) (Proc. Kruger National Park TeV Workshop, Westprint, Potchefstroom, in the press); also as preprint astro-ph/9711256.

  20. Rees, M. J. Gamma-ray bursts: challenges to relativistic astrophysics.in Proc. 18th Texas Symp. on Relativistic Astrohysics 1996(eds Olinto, A., Friemann, J. & Schramm, D. N.) (World Scientific, in the press); also as preprint astro-ph/9701162.

  21. Mészáros, P. Theoretical models of gamma-ray bursts.in Gamma-Ray Bursts(eds Meegan, C., Preece, R. & Koshut, T.) (Proc. 4th Huntsville Symp., Am. Inst. Phys., in the press); also as preprint astro-ph/9711354.

  22. Bhat, C. L. et al. Evidence for sub-millisecond structure in a γ-ray burster. Nature 359, 217–216 (1992).

    Article  ADS  Google Scholar 

  23. Scargle, J. D., Norris, J. & Bonnell, J. Attributes of GRB pulses: Bayesian blocks analysis of TTE data; a microburst in GR920229.in Gamma-Ray Bursts(eds Meegan, C., Preece, R. & Koshut, T.) (Proc. 4th Huntsville Symp., Am. Inst. Phys., in the press); also as preprint astro-ph/9712016.

  24. Barnett, R. M. et al. Review of particle properties. Phys. Rev. D 54, 207–720 (1996).

    Article  MathSciNet  Google Scholar 

  25. Witten, E. Strong coupling expansion of Calabi-Yau compactification. Nucl. Phys. B 471, 135–158 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  26. Paczynski, B. Gamma-ray bursts at cosmological distances. Astrophys. J. 308, L43–L46 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Nemiroff, R. J. et al. Searching gamma-ray bursts for gravitational lensing echoes—Implications for compact dark matter. Astrophys. J. 414, 36–40 (1994).

    Article  ADS  Google Scholar 

  28. Krawczynski, H. et al. Search for TeV counterparts of gamma-ray bursts with the HEGRA experiment.in Proc. Int. School of Cosmic-Ray Astrophysics(World Scientific, in the press); also as preprint astro-ph/9611044.

  29. Boyle, P. J. et al. in Proc. 25th Int. Cosmic ray Conf. Vol. 3 (eds Potgieter M. S. et al.) 61 (Westprint, Potchefstroom, 1998); also as preprint astro-ph/9706132.

    Google Scholar 

  30. Hurley, K. et al. Detection of a γ-ray burst of very long duration and very high energy. Nature 372, 652–654 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Amelino-Camelia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amelino-Camelia, G., Ellis, J., Mavromatos, N. et al. Tests of quantum gravity from observations of γ-ray bursts. Nature 393, 763–765 (1998). https://doi.org/10.1038/31647

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31647

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing