Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A king-sized theropod coprolite

Abstract

Fossil faeces (coprolites) provide unique trophic perspectives on ancient ecosystems. Yet, although thousands of coprolites have been discovered, specimens that can be unequivocally attributed to carnivorous dinosaurs are almost unknown. A few fossil faeces have been ascribed to herbivorous dinosaurs1,2,3, but it is more difficult to identify coprolites produced by theropods because other carnivorous taxa coexisted with dinosaurs and most faeces are taxonomically ambiguous. Thus sizeable (up to 20 cm long and 10 cm wide) phosphatic coprolites from Belgium4 and India5,6 that have been attributed to dinosaurs might have been produced by contemporaneous crocodylians7 or fish. But there is no ambiguity about the theropod origin of the Cretaceous coprolite we report here. This specimen is more than twice as large as any previously reported carnivore coprolite, and its great size and temporal and geographic context indicate that it was produced by a tyrannosaur, most likely Tyrannosaurus rex. The specimen contains a high proportion (30–50%) of bone fragments, and is rare tangible evidence of theropod diet and digestive processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Large, bone-bearing theropod coprolite with some of the broken pieces that had eroded downslope.
Figure 2: Photomicrograph of a thin section of the theropod coprolite, showing sand- to pebble-sized bone clasts within a microcrystalline phosphatic ground mass.
Figure 3: Photomicrograph of a thin section of the theropod coprolite, showing associated bone fragments that indicate digestive degradation.

References

  1. Hill, C. R. Coprolites of Ptiliophyllum cuticles from the Middle Jurassic of North Yorkshire. Bull. Br. Mus. Nat. Hist. 27, 289–294 (1976).

    Google Scholar 

  2. Chin, K. 7amp; Gill, B. D. Dinosaurs, dung beetles, and conifers: participants in a Cretaceous food web. Palaios 11, 280–285 (1996).

    Article  ADS  Google Scholar 

  3. Chin, K. 7amp; Kirkland, J. I. Probable herbivore coprolites from the Upper Jurassic Mygatt-Moore Quarry, Western Colorado. Mod. Geol. 23, 249–276 (1998).

    Google Scholar 

  4. Bertrand, C. E. Les Coprolithes de Bernissart. I. partie: Les Coprolithes qui ont ete attribues aux Iguanodons. Royal Musee Hist. Nat. Belgique Mem. 1, 1–154 (1903).

    Google Scholar 

  5. Matley, C. A. The coprolites of Pijdura, Central Provinces. Geol. Surv. Recs. 74, 535–547 (1939).

    Google Scholar 

  6. Jain, S. L. in Dinosaur Tracks and Traces (eds Gillette, D. D. 7amp; Lockley, M. G.) 99–108 (Cambridge Univ. Press, Cambridge, UK, (1989)).

    Google Scholar 

  7. Abel, O. Diskussion zu den Vorträgen R. Kräusel and F. Versluys. Palaeontologische Zeitschrift 4, 87 (1922).

    Google Scholar 

  8. Tokaryk, T. T. in Canadian Paleontology Conference Field Trip Guidebook No. 6 (ed. McKenzie-McAnally, L.) 34–44 (Geol. Assoc. Canada, St John's, Newfoundland, (1997)).

    Google Scholar 

  9. Hunt, A. P., Chin, K. 7amp; Lockley, M. G. in The Palaeobiology of Trace Fossils (ed. Donovan, S. K.) 221–240 (Wiley, Chichester, (1994)).

    Google Scholar 

  10. Stienstra, P. Sedimentary Petrology, Origin and Mining History of the Phosphate Rocks of Klein Curacao, Curacao and Aruba, Netherlands West Indies No. 130, 207 (Pub. Found. Sci. Res. Caribbean Region, (1991)).

    Google Scholar 

  11. Farlow, J. O., Smith, M. B. 7amp; Robinson, J. M. Body mass, bone “strength indicator”, and cursorial potential of Tyrannosaurus rex. J. Vert. Paleontol. 15, 713–725 (1995).

    Article  Google Scholar 

  12. Peczkis, J. Implications of body-mass estimates for dinosaurs. J. Vert. Paleontol. 14, 520–533 (1994).

    Article  Google Scholar 

  13. Duke, G. E., Jegers, A. A., Loff, G. 7amp; Evanson, O. A. Gastric digestion in some raptors. Comp. Biochem. Physiol. A 50, 649–659 (1975).

    Article  CAS  Google Scholar 

  14. Fisher, D. C. Crocodilian scatology, microvertebrate concentrations, and enamel-less teeth. Paleobiology 7, 262–275 (1981).

    Article  Google Scholar 

  15. Andrews, P. Owls, Caves and Fossils 231 (Univ. Chicago Press, Chicago, (1990)).

    Google Scholar 

  16. Denys, C., Fernandez-Jalvo, Y. 7amp; Dauphin, Y. Experimental taphonomy; preliminary results of the digestion of micromammal bones in the laboratory. Comptes Rendus Acad. Sci. 321, 803–809 (1995).

    Google Scholar 

  17. Mellett, J. S. Dinosaurs, mammals and Mesozoic taphonomy. Acta Palaeontol. Pol. 28, 209–213 (1983).

    Google Scholar 

  18. Hunt, A. P. Phanerozoic trends in nonmarine taphonomy: implications for Mesozoic vertebrate taphonomy and paleoecology. Geol. Soc. Am. Abstr. 19, 171 (1987).

    Google Scholar 

  19. Lucas, J. 7amp; Prévôt, L. E. in Taphonomy: Releasing the Data Locked in the Fossil Record (eds Allison, P. A. 7amp; Briggs, D. E. G.) 389–409 (Plenum, New York, (1991)).

    Book  Google Scholar 

  20. de Ricqlès, A. J. in Morphology and Biology of Reptiles (eds Bellairs, A. d'A. 7amp; Cox, C. B.) 123–150 (Academic, London, (1976)).

    Google Scholar 

  21. Reid, R. E. H. Zonal “grown rings” in dinosaurs. Mod. Geol. 15, 19–48 (1990).

    Google Scholar 

  22. Anderson, J. F., Hall-Martin, A. 7amp; Russell, D. A. Long-bone circumference and weight in mammals, birds and dinosaurs. J. Zool. A 207, 53–61 (1985).

    Article  Google Scholar 

  23. Stevens, C. E. 7amp; Hume, I. D. Comparative Physiology of the Vertebrate Digestive System 2nd edn, 400 (Cambridge Univ. Press, Cambridge, UK, (1995)).

    Google Scholar 

  24. Auffenberg, W. The Behavioral Ecology of the Komodo Monitor 406 (Univ. Presses of Florida, Gainesville, (1981)).

    Google Scholar 

  25. Fiorillo, A. R. Prey bone utilization by predatory dinosaurs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 88, 157–166 (1991).

    Article  Google Scholar 

  26. Farlow, J. O. Aconsideration of the trophic dynamics of a Late Cretaceous large-dinosaur community (Oldman Formation). Ecology 57, 841–857 (1976).

    Article  Google Scholar 

  27. Farlow, J. O., Brinkman, D. L., Abler, W. L. 7amp; Currie, P. J. Size shape and serration density of theropod dinosaur lateral teeth. Mod. Geol. 16, 161–198 (1991).

    Google Scholar 

  28. Erickson, G. M. et al. Bite-force estimation for Tyrannosaurus rex from tooth-marked bones. Nature 382, 706–708 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Erickson, G. M. 7amp; Olson, K. H. Bite marks attributable to Tyrannosaurus rex: preliminary description and implications. J. Vert. Paleontol. 16, 175–178 (1996).

    Article  Google Scholar 

  30. Hooper, P. R., Johnson, D. M. 7amp; Conrey, R. M. Major and trace element analyses of rocks and minerals by automated X-ray spectrometry (Washington State Univ., Geol. Dept, Open File Report, (1993)).

Download references

Acknowledgements

We thank W. Sloboda for the discovery of the coprolite; the Allemand family for permitting access to the land and its fossils; H. N. Bryant, M. J. Jurashius, C. E. Meyer, M. Moreno, R. L. Oscarson, J. F. Parham, D. Pierce, J. Rifkin and B. H. Tiffney for comments and technical assistance; the Royal Saskatchewan Museum, Stanford University, the US Geological Survey, and the University of California at Santa Barbara for technical and administrative assistance; and the late W. V. Sliter for support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Chin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, K., Tokaryk, T., Erickson, G. et al. A king-sized theropod coprolite. Nature 393, 680–682 (1998). https://doi.org/10.1038/31461

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31461

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing