Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamics of North American breeding bird populations

Abstract

Population biologists have long been interested in the variability of natural populations1,2,3,4,5,6. One approach to dealing with ecological complexity is to reduce the system to one or a few species, for which meaningful equations can be solved. Here we explore an alternative approach7,8 by studying the statistical properties of a data set containing over 600 species, namely the North American breeding bird survey9. The survey has recorded annual species abundances over a 31-year period along more than 3,000 observation routes10. We now analyse the dynamics of population variability using this data set, and find scaling features in common with inanimate systems composed of strongly interacting subunits11. Specifically, we find that the distribution of changes in population abundance over a one-year interval is remarkably symmetrical, with long tails extending over six orders of magnitude. The variance of the population over a time series increases as a power-law with increasing time lag, indicating long-range correlation in population size fluctuations12. We also find that the distribution of species lifetimes (the time between colonization and local extinction) within local patches is a power-law with an exponential cutoff imposed by the finite length of the time series. Our results provide a quantitative basis for modelling the dynamics of large species assemblages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scaling of population growth rates in the NA BBS data set.
Figure 2: Scaling of local species' lifetimes in the NA BBS data set.

Similar content being viewed by others

References

  1. May, R. M. Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos. Science 186, 645–647 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Ives, A. R. Chaos in time and space. Nature 353, 214–215 (1991).

    Article  ADS  Google Scholar 

  3. Turchin, P. Rarity of density dependence or population regulation with lags? Nature 344, 660–663 (1990).

    Article  ADS  Google Scholar 

  4. Arino, A. & Pimm, S. L. On the nature of population extremes. Evol. Ecol. 9, 429–443 (1995).

    Article  Google Scholar 

  5. Rhodes, C. J. & Anderson, R. M. Power laws governing epidemics in isolated populations. Nature 381, 600–602 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Curnutt, J. L., Pimm, S. L. & Maurer, B. A. Population variability of sparrows in space and time. OIKOS 76, 131–144 (1996).

    Article  Google Scholar 

  7. Brown, J. H. Macroecology (Univ. of Chicago Press, Chicago, (1995)).

    Google Scholar 

  8. Keitt, T. H. & Marquet, P. A. The introduced Hawaiian avifauna reconsidered: Evidence for self-organized criticality? J. Theor. Biol. 182, 161–167 (1996).

    Article  Google Scholar 

  9. Peterjohn, B. G. The North American breeding bird survey. J. Am. Birding Assoc. 26, 386–398 ((1994)).

    Google Scholar 

  10. Sauer, J. R., Hines, J. E., Gough, G., Thomas, I. & Peterjogn, B. G. The North American breeding bird survey results and analysis, version 96.3 (Patuxent Wildlife Research Center, Laurel, MD, (1997)). (http://www.mbr.nbs.gov/bbs/bbs.html)

    Google Scholar 

  11. Stanley, M. H. R. et al. Scaling behaviour in the growth of companies. Nature 379, 804–806 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Beran, J. Statistics for Long Memory Processes (Chapman and Hall, New York, (1994)).

    MATH  Google Scholar 

  13. Preston, F. W. The canonical distribution of commonness and rarity: I. Ecology 43, 185–215 (1962).

    Article  Google Scholar 

  14. MacArthur, R. H. On the relative abundance of bird species. Proc. Natl Acad. Sci. USA 43, 293–295 (1957).

    Article  ADS  CAS  Google Scholar 

  15. Sugihara, G. Minimal community structure: An explanation of species abundance. Am. Nat. 116, 770–787 (1980).

    Article  MathSciNet  Google Scholar 

  16. Hassell, M. P., Lawton, J. H. & May, R. M. Patterns of dynamical behavior in single-species populations. J. Anim. Ecol. 45, 471–486 (1976).

    Article  Google Scholar 

  17. Royoma, T. Analytical Population Dynamics (Chapman and Hall, London, (1992)).

    Book  Google Scholar 

  18. Connell, J. H. & Sousa, W. P. On the evidence needed to judge ecological stability or persistence. Am. Nat. 121, 789–824 (1983).

    Article  Google Scholar 

  19. Pimm, S. L. & Redfearn, A. The variability of population densities. Nature 334, 613–614 (1988).

    Article  ADS  Google Scholar 

  20. Steele, J. H. Acomparison of terrestrial and marine ecological systems. Nature 313, 355–358 (1985).

    Article  ADS  Google Scholar 

  21. Pitts, T. D. Eastern bluebird populations fluctuations in Tennessee during 1970–1979. The Migrant 52, 29–37 (1981).

    Google Scholar 

  22. Sauer, J. R. & Droege, S. Recent population trends of the eastern bluebird. Wilson Bull. 102, 239–252 (1990).

    Google Scholar 

  23. Sauer, J. R., Pendleton, G. W. & Peterjohn, B. G. Evaluating causes of population change in North American insectivorous songbirds. Conservation Biol. 10, 465–478 (1996).

    Article  Google Scholar 

  24. Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Linn. Soc. 42, 3–16 (1991).

    Article  Google Scholar 

  25. Hanski, I., Foley, P. & Hassell, M. Random walks in a metapopulation: How much density dependence is necessary for long-term persistence? J. Anim. Ecol. 65, 274–282 (1996).

    Article  Google Scholar 

  26. Diamond, J. M. & May, R. M. Species turnover rates on islands: Dependence on census interval. Science 197, 266–270 (1977).

    Article  ADS  CAS  Google Scholar 

  27. Schoener, T. W. & Spiller, D. A. High population persistence in a system with high turnover. Nature 330, 474–477 (1987).

    Article  ADS  Google Scholar 

  28. Pimm, S. L., Diamond, J., Reed, T. M., Russell, G. J. & Verner, J. Times to extinction for small populations of large birds. Proc. Natl. Acad. Sci. USA 90, 10871–10875 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Stanley, H. E. Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, Oxford, (1971)).

    Google Scholar 

  30. Stanley, H. E. Power laws and universality. Nature 378, 554 (1995).

    Article  ADS  CAS  Google Scholar 

  31. MacArthur, R. H. & Wilson, E. O. Island Biogeography (Princeton Univ. Press, (1967)).

    Google Scholar 

  32. Hanski, I. Apractical model of metapopulation dynamics. J. Anim. Ecol. 63, 151–162 (1994).

    Article  Google Scholar 

  33. Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: effect of immigration on extinction. Ecol. 58, 445–449 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Santa Fe Institute, Thaw Foundation and National Science Foundation. We thank B. Peterjohn and the Patuxent Wildlife Research Center, United States Department of the Interior, for providing the NA BBS data in digital form, and L. A. N. Amaral, P.Bak, J. H. Brown, P. A. Marquet, B. Maurer, R. M. May, B. T. Milne, M. Paczuski, B. Peterjohn, S.L.Pimm, R. V. Solé and M. Taper for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy H. Keitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keitt, T., Stanley, H. Dynamics of North American breeding bird populations. Nature 393, 257–260 (1998). https://doi.org/10.1038/30478

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30478

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing