Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The viscosity of liquid iron at the physical conditions of the Earth's core

Abstract

It is thought that the Earth's outer core consists mainly of liquid iron and that the convection of this metallic liquid gives rise to the Earth's magnetic field. A full understanding of this convection is hampered, however, by uncertainty regarding the viscosity of theouter core. Viscosity estimates from various sources span no less than 12 orders of magnitude1,2, and it seems unlikely that thisuncertainty will be substantially reduced by experimental measurements in the near future. Here we present dynamical first-principles simulations of liquid iron which indicate that the viscosity of iron at core temperatures and pressures is at the low end of the range of previous estimates — roughly 10 times that of typical liquid metals at ambient pressure. This estimate supports the approximation commonly made in magnetohydrodynamic models that the outer core is an inviscid fluid3,4,5 undergoing small-scale circulation and turbulent convection6, rather than large-scale global circulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Poirier, J. P. Transport properties of liquid metals and viscosity of the Earth's core. Geophys. J. 92, 99–105 (1988).

    Article  ADS  Google Scholar 

  2. Secco, R. A. in Mineral Physics and Crystallography: A Handbook of Physical Constants (ed. Ahrens, T.J.) 218 (American Geophysical Union, 1995).

    Google Scholar 

  3. Glatzmaier, G. A. & Roberts, P. H. Athree-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Buffett, B. A., Huppert, H. E., Lister, J. R. & Woods, A. W. On the thermal evolution of the Earth's core. J. Geophys. Res. 101, 7989–8006 (1996).

    Article  ADS  Google Scholar 

  5. Merrill, R. T. & McFadden, P. L. Dynamo theory and paleomagnetism. J. Geophys. Res. 100, 317–326 (1995).

    Article  ADS  Google Scholar 

  6. Melchior, P. The Physics of the Earth's Core (Pergamon, Oxford, 1986).

    Google Scholar 

  7. Jones, R. O. & Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689–746 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Stixrude, L., Cohen, R. E. & Singh, D. J. Iron at high pressure: Linearized-augmented-plane-wave computations in the generalized-gradient approximation. Phys. Rev. B 50, 6442–6445 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Söderlind, P., Moriarty, J. A. & Wills, J. M. First-principles theory of iron up to earth-core pressures: Structural, vibrational, and elastic properties. Phys. Rev. B 53, 14063–14072 (1996).

    Article  ADS  Google Scholar 

  11. Mao, H. K., Wu, Y., Chu, L. C., Shu, J. F. & Jephcoat, A. P. Compression of iron to 300 GPa and Fe0.8Ni0.2alloy to 260 GPa: Implications for composition of the core. J. Geophys. Res. 95, 21737–21742 (1990).

    Article  ADS  Google Scholar 

  12. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Holender, J. M., Gillan, M. J., Payne, M. C. & Simpson, A. D. The static, dynamic and electronic properties of liquid gallium studied by first-principles simulation. Phys. Rev. B 52, 967–975 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Moroni, E., Kresse, G., Furthmüller, J. & Hafner, J. Pseudopotentials applied to magnetic Fe, Co and Ni: From atoms to solids. Phys. Rev. B (submitted).

  16. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Perdew, J. et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Louie, S. G., Froyen, S. & Cohen, M. L. Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys. Rev. B 26, 1738–1742 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Ahrens, T. J. (ed.) Mineral Physics and Crystallography: A Handbook of Physical Constants (American Geophysical Union, 1995).

    Book  Google Scholar 

  20. Lonzarich, G. G. in Electrons at the Fermi Surface (ed. Springford, M.) 257 (Cambridge Univ. Press, 1980).

    Google Scholar 

  21. Anderson, O. L. The phase diagram of iron and the temperature of the inner core. J. Geomagn. Geoelectr. 45, 1235–1248 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Poirier, J. P. Introduction to the Physics of the Earth's Interior (Cambridge Univ. Press, 1991).

    Google Scholar 

  23. Anderson, W. W. & Ahrens, T. J. An equation of state for liquid iron and implications for the Earth's core. J. Geophys. Res. 99, 4273–4284 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Vočadlo, L., de Wijs, G. A., Kresse, G., Gillan, M. J. & Price, G. D. First principles calculations of crystalline and liquid iron at Earth's core conditionsin Solid-State Chemistry — New Opportunities from Computer Simulations (eds Mackrodt, W. & Catlow, R.) (Faraday Discussion No. 106, Royal Society of Chemistry, London, 1997).

  25. Shimoji, M. & Itami, T. Atomic Transport in Liquid Metals (Trans Tech, Aedermannsdorf, 1986).

    Google Scholar 

  26. Alder, B. J., Gass, D. M. & Wainwright, T. E. The transport coefficients for a hard-sphere fluid. J. Chem. Phys. 53, 3813–3826 (1970).

    Article  ADS  CAS  Google Scholar 

  27. Erpenbeck, J. J. & Wood, W. W. Molecular dynamics calculation of the velocity autocorrelation function: hard-sphere results. Phys. Rev. A 32, 412–422 (1985).

    Article  ADS  CAS  Google Scholar 

  28. LeBlanc, G. E. & Secco, R. A. Viscosity of an Fe-S liquid up to 1300 °C and 5 GPa. Geophys. Res. Lett. 23, 213–216 (1996).

    Article  ADS  Google Scholar 

  29. Anderson, D. L. Bulk attenuation in the Earth and viscosity of the core. Nature 285, 204–207 (1980).

    Article  ADS  CAS  Google Scholar 

  30. Officer, C. B. Aconceptual model of core dynamics and the Earth's magnetic field. J. Geophys. 59, 89–97 (1986).

    Google Scholar 

Download references

Acknowledgements

The simulations were run on the Cray T3D at Edinburgh Parallel Computer Centre with support from the High Performance Computing Initiative. We thank E. Moroni, J. Hafner and J.Brodholt for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Gillan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Wijs, G., Kresse, G., Vočadlo, L. et al. The viscosity of liquid iron at the physical conditions of the Earth's core. Nature 392, 805–807 (1998). https://doi.org/10.1038/33905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33905

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing