Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites

Abstract

Primitive meteorites (such as the unequilibrated ordinary chondrites) have undergone only minor thermal processing on their parent asteroids, and thus provide relatively unaltered isotopic records from the early Solar System. For terrestrial materials, oxygen isotope compositions form a linear array called the terrestrial fractionation line1. In meteorites the oxygen isotopic composition commonly deviates from this line2, the magnitude of the deviation being expressed by the quantity Δ17O. Such deviations, which cannot be explained by mass-dependent fractionation processes, are probably caused by the mixing of two or more nebular components having different nucleosynthetic histories, for example, solids and gas. But no direct evidence for the oxygen isotopic composition of the latter (which is the dominant oxygen reservoir) has hitherto been available. Here we report in situ oxygen-isotope measurements of magnetite grains in unequilibrated ordinary chondrites. Magnetite (which formed by aqueous alteration of metal in the parent asteroid) may serve as a proxy for nebular H2O. We measured a value of Δ17O ≈ 5‰, much higher than typical values of 0–2‰ in ordinary-chondrite silicate grains. Our results imply that a nebular component of high-Δ17O H2O was incorporated into the parent asteroid of the unequilibrated ordinary chondrites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Back-scattered-electron image of part of low-FeO porphyritic olivine chondrule (PO1) in Semarkona USNM1805-5.
Figure 2: Oxygen-isotope measurements for Semarkona and Ngawi magnetite.
Figure 3: A model calculation for formation of magnetite and phyllosilicates.

Similar content being viewed by others

References

  1. Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Clayton, R. N., Onuma, N., Grossman, L. & Mayeda, T. K. Distribution of the presolar component in Allende and other carbonaceous chondrites. Earth Planet. Sci. Lett. 34, 209–224 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Clayton, R. N., Grossman, L. & Mayeda, T. K. Acomponent of primitive nuclear composition in carbonaceous meteorites. Science 182, 485–488 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Clayton, R. N., Onuma, N. & Mayeda, T. K. Aclassification of meteorites based on oxygen isotopes. Earth Planet. Sci. Lett. 30, 10–18 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Clayton, R. N. & Mayeda, T. K. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151–161 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Morioka, M. Cation diffusion in olivine, I. Cobalt and magnesium. Geochim. Cosmochim. Acta 44, 759–762 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Ryerson, F. J., Durham, W. B., Cherniak, D. J. & Lanford, W. A. Oxygen diffusion in olivine: Effect of oxygen-fugacity and implications for creep. J. Geophys. Res. 44, 4105–4118 (1989).

    Article  ADS  Google Scholar 

  8. Krot, A. N.et al. Carbide-magnetite assemblages in type-3 ordinary chondrites. Geochim. Cosmochim. Acta 61, 219–237 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Hutchison, R., Alexander, C. M. O. & Barber, D. J. The Semarkona meteorite; First recorded occurrence of smectite in an ordinary chondrite, and its implication. Geochim. Cosmochim. Acta 51, 1875–1882 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Grossman, J. N. Semarkona: The least metamorphosed ordinary chondrite. (abstr.) Meteoritics 20, 656–657 (1985).

    ADS  Google Scholar 

  11. Sears, D. W. G., Hasan, E. A., Batchelor, J. D. & Lu, J. Chemical and physical studies of type 3 chondrites — XI: Metamorphism, pairing, and brecciation of ordinary chondrites. Proc. Lunar Planet. Sci. Conf. 21, 493–512 (1991).

    ADS  Google Scholar 

  12. Choi, B.-G., McKeegan, K. D., Leshin, L. A. & Wasson, J. T. Origin of magnetite in oxidized CV chondrites: in situ measurement of oxygen isotope compositions of magnetite and olivine in CV3 Allende. Earth Planet. Sci. Lett. 146, 337–349 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Clayton, R. N., Mayeda, T. K., Goswami, J. N. & Olsen, E. J. Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–2337 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Huss, G. R., Fahey, A. J., Gallino, R. & Wasserburg, G. J. Oxygen isotopes in circumstellar Al2O3grains from meteorites and stellar nucleosynthesis. Astrophys. J. 430, L81–L84 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Nittler, L. R., Alexander, C. M. O'D., Gao, X., Walker, R. M. & Zinner, E. K. Interstellar oxide grains from the Tieschitz ordinary chondrite. Nature 370, 443–446 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Saxton, J. M., Lyon, I. C., Turner, G. & Hutchison, R. Oxygen isotopes in Semarkona magnetite. (abstr.). Meteoritics 30, 572–573 (1995).

    ADS  Google Scholar 

  17. Shimizu, N. & Hart, S. R. Isotope fractionation in secondary ion mass spectrometry. J. Appl. Phys. 53, 1303–1311 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Rowe, M. W., Clayton, R. N. & Mayeda, T. K. Oxygen isotopes in separated components of Cl and CM meteorites. Geochim. Cosmochim. Acta 58, 5341–5347 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Jarosewich, E. Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics 25, 323–337 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Savin, S. M. & Lee, M. Isotopic studies of phyllosilicates. Rev. Mineral. 19, 189–223 (1988).

    CAS  Google Scholar 

  21. Palme, H. & Boynton, W. V. in Protostars and Planets III(eds Levy, E. & Lunine, J. I.) 979–1004 (Univ. Arizona Press, Tucson, (1993).

    Google Scholar 

Download references

Acknowledgements

We thank C. Coath, G. Jarzebinski and L. Leshin for technical assistance with the ion microprobe, A. Rubin for petrological advice and S. Savin and R. N. Clayton for discussions. Reviews by G. Huss and B. Giletti led to improvements in the manuscript. The Semarkona and Ngawi thin sections were provided by G. MacPherson (Smithsonian Instn) and A. Brearley (Univ. New Mexico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeon-Gak Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, BG., McKeegan, K., Krot, A. et al. Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites. Nature 392, 577–579 (1998). https://doi.org/10.1038/33356

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33356

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing