Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of Feshbach resonances in a Bose–Einstein condensate

Abstract

It has long been predicted that the scattering of ultracold atoms can be altered significantly through a so-called ‘Feshbach resonance’. Two such resonances have now been observed in optically trapped Bose–Einstein condensates of sodium atoms by varying an external magnetic field. They gave rise to enhanced inelastic processes and a dispersive variation of the scattering length by a factor of over ten. These resonances open new possibilities for the study and manipulation of Bose–Einstein condensates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observation of the Feshbach resonance at 907 G using phase-contrast imaging in an optical trap.
Figure 2: Observation of the Feshbach resonance at 907 G using time-of-flight absorption imaging.

Similar content being viewed by others

References

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose-Einstein condensation of lithium: Observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Georgia Southern University BEC home page, http://amo.phy.gasou.edu/bec.html.

  5. Bradley, C. C., Sackett, C. A., Tollett, J. J. & Hulet, R. G. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687–1690 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Tiesinga, E., Moerdijk, A. J., Verhaar, B. J. & Stoof, H. T. C. Conditions for Bose-Einstein condensation in magnetically trapped atomic cesium. Phys. Rev. A 46, R1167–R1170 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Tiesinga, E., Verhaar, B. J. & Stoof, H. T. C. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114–4122 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Moerdijk, A. J., Verhaar, B. J. & Axelsson, A. Resonances in ultracold collisions of 6Li, 7Li and 23Na. Phys. Rev. A 51, 4852–4861 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Vogels, J. M. et al. Prediction of Feshbach resonances in collisions of ultracold rubidium atoms. Phys. Rev. A 56, R1067–R1070 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Boesten, H. M. J. M., Vogels, J. M., Tempelaars, J. G. C. & Verhaar, B. J. Properties of cold collisions of 39K atoms and of 41K atoms in relation to Bose-Einstein condensation. Phys. Rev. A 54, R3726–R3729 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Fedichev, P. O., Kagan, Yu., Shlyapnikov, G. V. & Walraven, J. T. M. Influence of nearly resonant light on the scattering length in low-temperature atomic gases. Phys. Rev. Lett. 77, 2913–2916 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Bohn, J. L. & Julienne, P. S. Prospects for influencing the scattering lengths with far-off-resonant light. Phys. Rev. A 56, 1486–1491 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Moerdijk, A. J., Verhaar, B. J. & Nagtegaal, T. M. Collisions of dressed ground-state atoms. Phys. Rev. A 53, 4343–4351 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Feshbach, H. Aunified theory of nuclear reactions. II. Ann. Phys. 19, 287–313 (1962).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Bryant, H. C. et al. Observation of resonances near 11 eV in the photodetachment cross-section of the H ion. Phys. Rev. Lett. 38, 228–230 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Kagan, Yu., Surkov, E. L. & Shlyapnikov, G. V. Evolution and global collapse of trapped Bose condensates under variations of the scattering length. Phys. Rev. Lett. 79, 2604–2607 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Newbury, N. R., Myatt, C. J. & Wieman, C. E. s-wave elastic collisions between cold ground-state 87Rb atom. Phys. Rev. A 51, R2680–R2683 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Courteille, P. & Heinzen, D. Paper presented at SPIE Photonics West, 24–30 Jan., San Jose, California ((1998)).

    Google Scholar 

  19. Stemper-Kurn, D. M. et al. Optical confinement of a Bose-Einstein condensate. Phys. Rev. Lett.(in the press).

  20. Tiesinga, E. et al. Aspectroscopic determination of scattering lengths for sodium atom collisions. J.Res. Natl Inst. Stand. Technol. 101, 505–520 (1996).

    Article  CAS  Google Scholar 

  21. Mewes, M.-O. et al. Bose-Einstein condensation in a tightly confining d.c. magnetic trap. Phys. Rev. Lett. 77, 416–419 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Andrews, M. R. et al. Propagation of sound in a Bose–Einstein condensate. Phys. Rev. Lett. 79, 553–556 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Baym, G. & Pethick, C. J. Ground-state properties of magnetically trapped Bose-condensed rubidium gas. Phys. Rev. Lett. 76, 6–9 (1996).

    Article  ADS  CAS  Google Scholar 

  24. van Abeelen, F. A., Verhaar, B. J. & Moerdijk, A. J. Sympathetic cooling of 6Li atoms. Phys. Rev. A 55, 4377–4381 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Ho, T.-L. & Shenoy, V. B. Binary mixtures of Bose condensates of alkali atoms. Phys. Rev. Lett. 77, 3276–3279 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. M. Vogels for discussions, A. P. Chikkatur for experimental assistance, and B. J. Verhaar and F. A. van Abeelen for providing updated theoretical predictions. We also thank D.Kleppner, D. E. Pritchard and R. A. Rubenstein for a critical reading of the manuscript. This work was supported by the Office of Naval Research, NSF, Joint Services Electronics Program (ARO), and the David and Lucile Packard Foundation. J.S. acknowledges support from the Alexander von Humboldt-Foundation, and D.M.S.-K. was supported by the JSEP graduate fellowship program.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inouye, S., Andrews, M., Stenger, J. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998). https://doi.org/10.1038/32354

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32354

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing