Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of compartmental affinity boundaries by Hedgehog

Abstract

In Drosophila, each segmental primordium is subdivided into two cell populations, the anterior (A) and posterior (P) compartments by the selective activity of the transcription factor Engrailed (En) in P cells1,2,3,4. Under En control, P cells secrete, but cannot respond to, the signalling protein Hedgehog (Hh)5,6,7. In contrast, and by default, A cells are programmed to respond to Hh by expressing other signalling molecules, such as Decapentaplegic (Dpp) and Wingless (Wg), which organize growth and patterning in both compartments5,7,8,9. Cells of the A and P compartments do not intermix, apparently as a consequence of their having distinct cell affinities that cause them to maximize contact with cells of the same compartment, while minimizing contact with cells from the other compartment10. This failure to mix has previously been ascribed to an autonomous and direct role for En in specifying a P, as opposed to an A, cell affinity3,11,12,13. However, an alternative hypothesis is that Hh secreted by P cells induces A cells to acquire a distinct cell affinity, ensuring that a stable ‘affinity boundary’ forms wherever P and A cells meet. Here we show that the affinity boundary that segregates A and P cells into adjacent but immiscible cell populations is to a large extent a consequence of local Hh signalling, rather than a reflection of an intrinsic affinity difference between A and P cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Smo cells redirect the A/P affinity boundary.
Figure 2: Smo cells that crossed the affinity boundary autonomously form ectopic A pattern.
Figure 3: Constitutive activation of the Hh signal-transduction pathway can rescue the abnormal segregation behaviour of smo cells and cause smo +A cells to minimize contact with surrounding cells that do not receive the Hh signal.

Similar content being viewed by others

References

  1. Garcia-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalization of the wing disk of Drosophila. Nature 246, 251–253 (1973).

    Article  Google Scholar 

  2. Garcia-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalization in the dorsal mesothoracic disc of Drosophila. Dev. Biol. 48, 132–147 (1976).

    Article  CAS  PubMed  Google Scholar 

  3. Morata, G. & Lawrence, P. A. Control of compartment development by the engrailed gene in Drosophila. Nature 255, 614–617 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kornberg, T., Siden, I., O'Farrell, P. & Simon, M. The engrailed locus of Drosophila: in situ localization of transcripts reveals compartment-specific expression. Cell 40, 45–53 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Basler, K. & Struhl, G. Compartment boundaries and the control of Drosophila limb pattern by Hedgehog protein. Nature 368, 208–214 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Tabata, T. & Kornberg, T. B. Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76, 89–102 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Zecca, M., Basler, K. & Struhl, G. Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Deveopment 121, 2265–2278 (1995).

    CAS  Google Scholar 

  8. Tabata, T., Schwartz, C., Gustavson, E., Ali, Z. & Kornberg, T. B. Creating a Drosophila wing de novo, the role of engrailed, and the compartment border hypothesis. Development 121, 3359–3369 (1995).

    CAS  PubMed  Google Scholar 

  9. Capdevila, J. & Guerrero, I. Targeted expression of the signaling molecule decapentaplegic induces pattern duplications and growth alterations in Drosophila wings. EMBO J. 13, 4459–4468 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garcia-Bellido, A. Genetic control of wing disc development in Drosophila. Ciba Found. Symp. 161–182 (1975).

  11. Lawrence, P. A. & Struhl, G. Further studies of the engrailed phenotype in Drosophila. EMBO J. 1, 827–833 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blair, S. S. Compartments and appendage development in Drosophila. Bioessays 17, 299–309 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Lawrence, P. A. & Struhl, G. Morphogens, compartments, and pattern: lessons from Drosophila ? Cell 85, 951–961 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Nüsslein-Volhard, C., Wieschaus, E. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: I. Zygotic loci on the second chromosome. Wilhelm Roux Arch. Dev. Biol. 193, 267–282 (1984).

    Article  Google Scholar 

  15. Alcedo, J., Ayzenzon, M., Von Ohlen, T., Noll, M. & Hooper, J. E. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86, 221–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. van den Heuvel, M. & Ingham, P. W. smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 382, 547–551 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Chen, Y. & Struhl, G. Dual roles for Patched in sequestering and transducing Hedgehog. Cell 87, 553–563 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  19. Dunin, B. O. & Brown, N. H. Mammalian CD2 is an effective heterologous marker of the cell surface in Drosophila. Dev. Biol. 168, 689–693 (1995).

    Article  Google Scholar 

  20. Jiang, J. & Struhl, G. Protein kinase A and Hedgehog signaling in Drosophila limb development. Cell 80, 563–572 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Hama, C., Ali, Z. & Kornberg, T. B. Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter. Genes Dev. 4, 1079–1093 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Lawrence, P. A. in Drosophila: a Practical Approach (eds Roberts, D. B.) 229–242 (IRL, Oxford, (1986)).

    Google Scholar 

  23. Burke, R. & Basler, K. Dpp receptors are autonomously required for cell proliferation in the entire developing Drosophila wing. Development 122, 2261–2269 (1996).

    CAS  PubMed  Google Scholar 

  24. Lawrence, P. A. & Morata, G. Compartments in the wing of Drosophila: a study of the engrailed gene. Dev. Biol. 50, 321–337 (1976).

    Article  CAS  PubMed  Google Scholar 

  25. Li, W., Ohlmeyer, J. T., Lane, M. E. & Kalderon, D. Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell 80, 553–562 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Pan, D. & Rubin, G. M. cAMP-dependent protein kinase and hedgehog act antagonistically in regulating decapentaplegic transcription in Drosophila imaginal discs. Cell 80, 543–552 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Ingham, P. W., Taylor, A. M. & Nakano, Y. Role of the Drosophila patched gene in positional signalling. Nature 353, 184–187 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Phillips, R. G., Roberts, I. J., Ingham, P. W. & Whittle, J. R. The Drosophila segment polarity gene patched is involved in a position-signalling mechanism in imaginal discs. Development 110, 105–114 (1990).

    CAS  PubMed  Google Scholar 

  29. Johnson, R. L., Grenier, J. K. & Scott, M. P. Patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets. Development 121, 4161–4170 (1995).

    CAS  PubMed  Google Scholar 

  30. Lindsley, D. L. & Zimm, G. G. The Genome of Drosophila melanogaster (Academic, San Diego, (1992)).

    Google Scholar 

  31. Motzny, C. K. & Holmgren, R. The Drosophila cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways. Mech. Dev. 52, 137–150 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Nüsslein-Volhard, Y. Chen and G. Struhl for fly stocks; R. Burke, C.Dahmann, N. Méthot and particularly G. Struhl for comments on the manuscript; F. Cifuentes, D.Nellen and M. Zecca for help with the clonal analysis; and J. Modolell for support. I.R. was the recipient of an EMBO fellowship. This work was supported by the Swiss National Science Foundation, the Direccion general de Investigacion Cientifica y Tecnica, and the Fundacion Ramon Areces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Basler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, I., Basler, K. Control of compartmental affinity boundaries by Hedgehog. Nature 389, 614–618 (1997). https://doi.org/10.1038/39343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39343

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing