Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Creating electrical contacts between metal particles using directed electrochemical growth

Abstract

Electrical connections in microelectronics are usually established by means of photolithography to define the conducting channels. But methods that do not involve lithography have been explored, such as the use of electrodeposition1 or electropolymerization2,3,4,5,6 to grow random structures of conducting material between two electrodes. This approach has been used to make diodes, transistors and signal amplifiers based on conducting polymers2,3. Template-based7,8,9,10,11,12 and thermal plating13 strategies have also been used to direct the growth of electrically conducting media. One advantage of these approaches over photolithography is the possibility of forming contacts in three dimensions and so achieving enhanced data-processing densities. Previous electrochemical approaches have required that the electrodes to be connected are physically linked to the external voltage source. Here we show that electrodissolution and electrodeposition processes in an applied electric field can be exploited to create directional growth of copper deposits between copper particles that are not connected to an external circuit. Moreover, the particles distort the electric field in such a way as to focus the diffusion of copper ions and consequently the direction of ‘wire’ growth, enabling the particles to be connected to one another in a directional and controllable manner. This suggests that appropriately directed electric fields may be used to connect an array of such particles into an arbitrary circuit pattern.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of wire formation between two particles under bipolar conditions.
Figure 2: Wire formation between two copper particles.
Figure 3: Dependence of wire growth time on the applied external field.
Figure 4: Control of wire growth within a 4× 4 particle array.

Similar content being viewed by others

References

  1. Gurtner, C. & Sailor, M. J. Selective construction of electrical connections using an organic charge transfer salt. Adv. Mater. 8, 897–899 (1996).

    Article  CAS  Google Scholar 

  2. McCoy, C. H. & Wrighton, M. S. Potential dependent conductivity of conducting polymers yields opportunities for molecule based devices—a microelectrochemical push–pull amplifier based on 2 different conducting polymer transistors. Chem. Mater. 5, 914–916 (1993).

    Article  CAS  Google Scholar 

  3. Jones, E. T. T., Chyan, O. M. & Wrighton, M. S. Preparation and characterisation of molecule-based transistors with a 50-nm source-drain separation with use of shadow deposition techniques—toward faster, more sensitive molecule-based devices. J. Am. Chem. Soc. 109, 5526–5528 (1987).

    Article  CAS  Google Scholar 

  4. Sailor, M. J. & Curtis, C. L. Conducting polymer connections for molecular devices. Adv. Mater. 6, 688–692 (1994).

    Article  CAS  Google Scholar 

  5. Fujii, M., Arii, K. & Yoshino, K. Neuron-type polypyrrole device prepared by electrochemical polymerization method and its properties. Synth. Met. 71, 2223–2224 (1995).

    Article  CAS  Google Scholar 

  6. Curtis, C. L., Ritchie, J. E. & Sailor, M. J. Fabrication of conducting polymer interconnects. Science 262, 2014–2016 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Hidber, P. C., Nealey, P. F., Helbig, W. & Whitesides, G. M. New strategy for controlling the size and shape of metallic features formed by electroless deposition of copper—microcontact printing of catalysts on oriented polymers, followed by thermal shrinkage. Langmuir 12, 4209–5215 (1996).

    Google Scholar 

  8. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Wang, L., Yu-Zhang, K., Metrot, A., Bonhomme, P. & Troyon, M. TEM study of electrodeposited Ni/Cu multilayers in the form of nanowires. Thin Solid Forms 288, 86–89 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Martin, C. R. Nanomaterials—a membrane-based synthetic approach. Science 266, 1961–1966 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Huber, C. A. et al. Nanowire array composites. Science 263, 800–802 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Von Gutfeld, R. J. & Vigliotti, D. R. Copper microcircuit repair of opens using thermally driven exchange plating. Appl. Phys. Lett. 56, 2584–2586 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Lee, J. K., Shemilt, L. W. & Chun, H. S. Studies of bipolarity in fluidized-bed electrodes. J. Appl. Electrochem. 19, 877–881 (1989).

    Article  CAS  Google Scholar 

  15. Kusakabe, K., Kimura, T., Morooka, S. & Kato, Y. Recirculating feed operation of bipolar packed-bed and trickle-bed electrode cells equipped with mesh spacers. J. Appl. Electrochem. 17, 724–730 (1987).

    Article  CAS  Google Scholar 

  16. Plimley, R. E. & Wright, A. R. Abipolar mechanism for charge transfer in a fluidized bed electrode. Chem. Eng. Sci. 39, 395–405 (1984).

    Article  CAS  Google Scholar 

  17. Handley, D. & Eardley, D. C. Bipolar electrolysis with intraphase conduction in fluidized beds. Chem. Ind. 330–332 (1975).

  18. Sudoh, M., Kodera, T. & Ichino, T. Effect of oxygen sparging into packed-bed electrode on production rate of hydrogen peroxide. J. Chem. Eng. Jpn. 24, 165–170 (1991).

    Article  CAS  Google Scholar 

  19. Manji, A. & Oloman, C. W. Electrosynthesis of propylene-oxide in a bipolar trickle-bed reactor. J. Appl. Electrochem. 17, 532–544 (1987).

    Article  CAS  Google Scholar 

  20. Sudoh, M., Kodera, T., Hino, H. & Shimamura, H. Effect of anodic and cathodic reactions on oxidative-degradation of phenol in an undivided bipolar electrolyzer. J. Chem. Eng. Jpn. 21, 198–208 (1988).

    Article  CAS  Google Scholar 

  21. Kim, H. J., Kusakabe, K., Hokazono, S., Morooka, S. & Kato, Y. Electro-oxidation rate of p-tertpbutyltoluene in a bipolar packed bed electrode cell. J. Appl. Electrochem. 17, 1213–1222 (1987).

    Article  CAS  Google Scholar 

  22. Ghoroghchian, J., Pons, S. & Fleischmann, M. Gas-phase electrochemistry on dispersions of microelectrodes. J. Electroanal. Chem. 317, 101–108 (1991).

    Article  CAS  Google Scholar 

  23. Rolison, D. R. Zeolite-modified electrodes and electrode modified zeolites. Chem. Rev. 90, 867–878 (1990).

    Article  CAS  Google Scholar 

  24. Fleischmann, M., Ghoroghchian, J., Rolison, D. & Pons, S. Electrochemical-behavior of dispersions of spherical ultramicroelectrodes. J. Phys. Chem. 90, 6392–6400 (1986).

    Article  CAS  Google Scholar 

  25. Bradley, J.-C., Guedeau-Boudeville, M.-A., Jandeau, G. & Lehn, J.-M. Toposomes bearing stable perforations by the action of an electric field on partially polymerized giant vesicles. Langmuir 13, 2457–2462 (1997).

    Article  CAS  Google Scholar 

  26. Kirkova, L. & Rashkov, S. Anodic behavior of copper during electrorefining using a rotating ring-disc electrode. Appl. Electrochem. 24, 420–425 (1994).

    Google Scholar 

  27. Sawada, Y., Dougherty, A. & Gollub, J. P. Dendritic and fractal patterns in electrolytic metal depositions. Phys. Rev. Lett. 56, 1260–1263 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Fleury, V. & Barkey, D. Runaway growth in 2-dimensional electrodeposition. Europhys. Lett. 36, 253–258 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Bazant, M. Z. Regulation of ramified electrochemical growth by a diffusive wave. Phys. Rev. E 52, 1903–1914 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Cork, R. H., Pritchard, D. C. & Tam, W. Y. Local concentration measurements in electrochemical deposition using a schlieren method. Phys. Rev. A 44, 6940–6943 (1991).

    Article  ADS  CAS  Google Scholar 

  31. Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367 (1990).

    Article  ADS  CAS  Google Scholar 

  32. Marshall, G. & Mocskos, P. Growth model for ramified electrochemical deposition in the presence of diffusion, migration, and electroconvection. Phys. Rev. E 55, 549–563 (1997).

    Article  ADS  CAS  Google Scholar 

  33. Huang, W. G. & Hibbert, D. B. Fast fractal growth with diffusion, convection and migration by computer-simulation-effects of voltage of probability, morphology and fractal dimension of electrochemical growth in a rectangular cell. Physica A 233, 888–898 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Marshall, G., Tagtachian, S. & Lam, L. Growth-pattern formation in copper electrodeposition—experiments and computational modeling. Chaos, Solitons Fractals 6, 325–339 (1995).

    Article  ADS  CAS  Google Scholar 

  35. Fleury, V., Kaufman, J. H. & Hibbert, D. B. Mechanism of a morphology transition in ramified electrochemical growth. Nature 367, 435–438 (1994).

    Article  ADS  CAS  Google Scholar 

  36. Barkey, D. P., Watt, D., Liu, Z. & Raber, S. The role of induced convection in branched electrodeposit morphology selection. J. Electrochem. Soc. 141, 1206–1212 (1994).

    Article  CAS  Google Scholar 

  37. Livermore, C. & Wong, P. Z. Convection and turbulence effects in strongly driven electrochemical deposition. Phys. Rev. Lett. 72, 3847–3850 (1994).

    Article  ADS  CAS  Google Scholar 

  38. Fleury, V., Chazalviel, J. N. & Rosso, M. Coupling of drift, diffusion, and electroconvection, in the vicinity of growing electrodeposits. Phys. Rev. E 48, 1279–1295 (1993).

    Article  ADS  CAS  Google Scholar 

  39. Halsey, T. C. Electrodeposition and diffusion-limited aggregation. J. Chem. Phys. 92, 3756–3767 (1990).

    Article  ADS  CAS  Google Scholar 

  40. Garik, P. et al. Laplace-field-controlled and diffusion-field-controlled growth in electrochemical deposition. Phys. Rev. Lett. 62, 2703–2706 (1989).

    Article  ADS  CAS  Google Scholar 

  41. Argoul, F., Arneodo, A., Grasseau, G. & Swinney, H. L. Self-similarity of diffusion-limited aggregates and electrodeposition clusters. Phys. Rev. Lett. 61, 2558–2561 (1988).

    Article  ADS  CAS  Google Scholar 

  42. Sawada, Y., Dougherty, A. & Gollub, J. P. Dendritic and fractal patterns in electrolytic metal deposits. Phys. Rev. Lett. 56, 1260–1263 (1986).

    Article  ADS  CAS  Google Scholar 

  43. Keh, H. J. & Li, W. J. Interactions among bipolar spheres in an electrolytic cell. J. Electrochem. Soc. 141, 3103–3114 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Yuan, M. Vallieres and A. Nath for discussions. This work was supported by Drexel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Bradley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, JC., Chen, HM., Crawford, J. et al. Creating electrical contacts between metal particles using directed electrochemical growth. Nature 389, 268–271 (1997). https://doi.org/10.1038/38464

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38464

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing