Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary

Abstract

Ages ranging from the Late Cretaceous (65 Myr) to the Oligocene (29 Myr) have been reported for the 100-km-diameter Popigai impact structure1,2 on the Anabar shield, central Siberia. These ages3,4,5,6,7,8 overlap the timing of several possible impact-related features, including the Cretaceous/Tertiary and Eocene/Oligocene stratigraphic boundaries, the North American tektites9, and the recently reported occurrences of an iridium anomaly and shocked quartz in Late Eocene deposits in northern Italy10. Here we report age determinations of several Popigai impact melt rocks using the 40Ar–39Ar step heating technique to constrain the age of the impact event. Our results are consistent with a Late Eocene impact age of 35.7± 0.2 Myr (2σ)—coincident in time with the impact deposits found in Italy. As this age is also similar to that of the North American tektites, which have been associated with the Chesapeake Bay impact structure in the eastern United States11,12,13, there seem to have been at least two large and essentially contemporaneous impacts during the Late Eocene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 40Ar–39Ar incremental heating spectra for holocrystalline (P9; a) and hypocrystalline (P21; b) impact melt rocks from Popigai.
Figure 2: 40Ar–39Ar incremental heating spectra for cryptocrystalline impact melt rocks from Popigai.
Figure 3: 40Ar–39Ar incremental heating spectra for glassy impact melt rocks from Popigai.

Similar content being viewed by others

References

  1. Masaitis, V. L., Mikhailov, M. V. & Selivanovskaya, T. V. The Popigai Meteorite Crater.(Nauka, Moscow, (1975)). (in Russian.)

  2. Masaitis, V. L. et al. The Geology of Astroblemes(Nedra, Leningrad, (1980)). (in Russian.)

  3. Firsov, L. V. Paleogene basaltoids in the Popigai graben, Anabar Shield. Dokl. Akad. Nauk SSSR 194, 664–666 (1970). (in Russian.)

    CAS  Google Scholar 

  4. Komarov, A. N. & Raykhlin, A. I. Comparison of fission-track and potassium-argon dating of impactites. Dokl. Akad. Nauk SSSR 228, 673–676 (1976).

    CAS  Google Scholar 

  5. Storzer, D. & Wagner, G. A. Fission track dating of El'gygytgyn, Popigai and Zhamanshin impact craters: No sources for Australisian or North-American tektites. (abstr.) Meteoritics 14, 541–542 (1979).

    ADS  Google Scholar 

  6. Deino, A. L., Garvin, J. B. & Montanari, S. K/T age for the Popigai impact event? (abstr.) Lunar Planet. Sci. XXII, 297–298 (1991).

    ADS  Google Scholar 

  7. Deino, A. L., Montanari, A. & Vishnevsky, S. in 4th Int. Workshop ESF Network “Impact Cratering and Evolution of Planet Earth”(eds Montanari, A. & Coccioni, R.) 66–67 (Ancona, Italy, (1995)).

    Google Scholar 

  8. Grieve, R. A. F. Terrestrial impact structures. Annu. Rev. Earth Planet. Sci. 15, 245–270 (1987).

    Article  ADS  Google Scholar 

  9. Glass, B. P. & Zwart, M. J. in Stratigraphic Micropaleontology of Atlantic Basin and Boderlands(ed. Swain, F. M.) 553–568 (Elsevier, New York, (1979)).

    Google Scholar 

  10. Montanari, A., Asaro, F., Michel, H. V. & Kennett, J. P. Iridium anomalies of Late Eocene age at Massignano (Italy), and ODP Site 689B (Maud Rise, Antarctic). Palaios 8, 420–437 (1993).

    Article  ADS  Google Scholar 

  11. Poag, C. W., Powars, D. S., Poppe, L. J. & Mixon, R. B. Meteoroid mayhem in Ole Virginny: Source of the North American tektite strewn field. Geology 22, 691–694 (1994).

    Article  ADS  Google Scholar 

  12. Poag, C. W. & Aubry, M. -P. Upper Eocene impactites of the U.S. East Coast: Depositional origins, biostratigraphic framework, and correlation. Palaios 10, 16–43 (1995).

    Article  ADS  Google Scholar 

  13. Stecher, O., Ngo, H. H., Papanastassiou, D. A. & Wasserburg, G. J. Nd and Sr isotopic evidence for the origin of tektite materials from DSDP site 612 off the New Jersey coast. Meteoritics 24, 89–98 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Deutsch, A. & Schärer, U. Dating terrestrial impact events. Meteoritics 29, 301–322 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Bottomley, R. J., York, D. & Grieve, R. A. F. 40Argon–39Argon dating of impact craters. Proc. Lunar Planet. Sci. Conf. 20, 421–431 (1990).

    ADS  Google Scholar 

  16. Grieve, R. A. F. Petrology and chemistry of the impact melt at Mistastin Lake crater, Labrador. Geol. Soc. Am. Bull. 86, 1617–1629 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Floran, R. J. et al. Manicouagan impact melt, Quebec, 1, stratigraphy, petrology, and chemistry. J. Geophys. Res. 83, 2737–2759 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Masaitis, V. L. & Raikhlin, A. I. The Popigai crater formed by the impact of an ordinary chondrite. Dokl. Akad. Nauk SSSR 286, 1476–1478 (1986). (in Russian.)

    ADS  CAS  Google Scholar 

  19. Turner, G. & Cadogan, P. H. Possible effects of 39Ar recoil in 40Ar–39Ar dating. Proc. Lunar Sci. Conf. 5, 1601–1615 (1974).

    ADS  Google Scholar 

  20. Harrison, T. M. & McDougall, I. Excess 40Ar in metamorphic rocks from Broken Hill, New South Wales; implications for 40Ar/39Ar age spectra and the thermal history of the region. Earth Planet. Sci. Lett. 55, 123–149 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Layer, P. W., Hall, C. M. & York, D. The derivation of 40Ar–39Ar age spectra of single grains of hornblende and biotite by laser step-heating. Geophys. Res. Lett. 14, 757–760 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Turner, G., Huneke, J. C., Podosek, F. A. & Wasserburg, G. J. 40Ar–39Ar ages and cosmic ray exposure age of Apollo 14 samples. Earth Planet. Sci. Lett. 12, 19–35 (1971).

    Article  ADS  CAS  Google Scholar 

  23. Montanari, A. Geochronology of the terminal Eocene impacts: An update. Geol. Soc. Am. Spec. Pap. 274, 607–616 (1990).

    Google Scholar 

  24. Glass, B. P. & Burns, C. A. Late Eocene crystal-bearing spherules: Two layers or one? Meteoritics 22, 265–279 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Glass, B. P. North American tektite debris and impact ejecta from DSDP site 612. Meteoritics 34, 209–218 (1989).

    Article  ADS  Google Scholar 

  26. Bohor, B. F., Betterton, W. J. & Foord, E. E. Coesite, glass and shocked quartz at DSDP Site 612: Evidence for nearby impact in the late Eocene. (abstr.) Lunar Planet. Sci. XIX, 114–115 (1988).

    ADS  Google Scholar 

  27. Clymer, A. K., Bice, D. M. & Montanari, A. Shocked quartz from the late Eocene: Impact evidence from Massignano, Italy. Geology 24, 483–486 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Langenhorst, F. Characteristics of shocked quartz in late Eocene impact ejecta from Massignano (Ancona, Italy): Clues to shock conditions and source crater. Geology 24, 487–490 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Obradovich, J. D., Snee, L. W. & Izett, G. A. Is there more than one glassy impact layer in the late Eocene? (abstr.) Geol. Soc. Am. Abstr. Progm. 2, A134 (1989).

    Google Scholar 

  30. Glass, B. P., Hall, C. M. & York, D. 40Ar/39Ar laser-probe dating of North American tektite fragments from Barbados and the age of the Eocene-Oligocene boundary. Chem. Geol. 59, 181–186 (1986).

    CAS  Google Scholar 

  31. Shaw, H. F. & Wasserburg, G. J. Age and provenance of the target materials for tektites and possible impactites as inferred from Sm-Nd and Rb-Sr systematics. Earth Planet. Sci. Lett. 60, 155–177 (1982).

    Article  ADS  CAS  Google Scholar 

  32. Grieve, R. A. F. & Shoemaker, E. M. in Hazards Due to Comets and Asteroids(ed. Gehrels, T.) 417–462 (Univ. Arizona Press, Tucson, (1994)).

    Google Scholar 

Download references

Acknowledgements

We thank G. B. Dalrymple, S. Kelley, M. Pilkington and M. Villeneuve for comments on earlier version of this Letter. This work was supported by an NSERC operating grant to D.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Grieve.

Supplementary information

Supplementary Information

Supplementary material for the article (XLS 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottomley, R., Grieve, R., York, D. et al. The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary. Nature 388, 365–368 (1997). https://doi.org/10.1038/41073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41073

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing