Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Expression cloning and characterization of a renal electrogenic Na+ /HCO3 cotransporter

Abstract

Bicarbonate transporters are the principal regulators of pH in animal cells, and play a vital role in acid–base movement in the stomach, pancreas, intestine, kidney, reproductive system and central nervous system. The functional family of HCO3 transporters includes Cl–HCO3 exchangers, three Na+/HCO3 cotransporters1–3, a K+/HCO3 cotransporter4,5, and a Na+-driven Cl –HCO3 exchanger6,7. Molecular information is sparse on HCO3 transporters, apart from Cl –HCO3 exchangers ('anion exchangers'), whose complementary DNAs were cloned several years ago8–11. Attempts to clone other HCO3 transporters, based on binding of inhibitors, protein purification or homology with anion exchangers, have so far been unsuccessful. Here we monitor the intracellular pH and membrane voltage in Xenopus oocytes to follow the expression of the most electrogenic transporter known: the renal 1:3 electrogenic Na+/HCO3cotransporter from the salamander Ambystoma tigrinum. We now report the successful cloning and characterization of a cDNA encoding a cation-coupled HCO3 transporter. The encoded protein is 1,035 amino acids long with several potential membrane-spanning domains. We show that when it is expressed in Xenopus oocytes, this protein is electrogenic, Na+ and HCO3 dependent, and blocked by the anion-transport inhibitor DIDS, and conclude that it is the renal electrogenic sodium bicarbonate cotransporter (NBC).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boron, W. F. & Boulpaep, E. L. Intracellular pH regulation in the renal proximal tubule of the salamander: basolateral HCO3 transport. J. Gen. Physiol. 81, 53–94 (1983).

    Article  CAS  Google Scholar 

  2. Deitmer, J. W. & Schlue, W.-R. The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech. J. Physiol. (Lond.) 388, 261–283 (1987).

    Article  CAS  Google Scholar 

  3. Dart, C. & Vaughan-Jones, R. D. Na+-HCO3 symport in the sheep cardiac Purkinje fibre. J. Physiol. (Lond.) 451, 365–385 (1992).

    Article  CAS  Google Scholar 

  4. Hogan, E. M., Cohen, M. A. & Boron, W. F. K+- and HCO3 -dependent acid-base transport in squid giant axons: I. Base efflux. J Gen. Physiol. 106, 821–844 (1995).

    Article  CAS  Google Scholar 

  5. Hogan, E. M., Cohen, M. A. & Boron, W. F. K+- and HCO3, -dependent acid-base transport in squid giant axons: II. Base influx. J. Gen. Physiol. 106, 845–862 (1995).

    Article  CAS  Google Scholar 

  6. Russell, J. M. & Boron, W. F. Role of chloride transport in regulation of intracellular pH. Nature 264, 73–74 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Thomas, R. C. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J. Physiol. (Lond.) 273, 317–338 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Kopito, R. R. & Lodish, H. F. Primary structure and transmembrane orientation orientation of the murine anion exchange protein. Nature 316, 234–238 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Alper, S. L., Kopito, R. R., Libresco, S. M. & Lodish, H. F. Cloning and characterization of a murine band 3-related cDNA from kidney and from a lymphoic cell line. J. Biol. Chem. 263, 17092–17099 (1988).

    CAS  PubMed  Google Scholar 

  10. Kopito, R. R. et al. Regulation of intracellular pH by a neuronal homolog of the erhthrocyte anion exchanger. Cell 59, 927–937 (1989).

    Article  CAS  Google Scholar 

  11. Kudrycki, K. E., Newman, P. R. & Shull, G. E. cDNA cloning and tissue distribution of mRNAs for two proteins that are related to the band 3 Cl-HCO3 exchanger. J. Biol. Chem. 265, 462–471 (1990).

    CAS  PubMed  Google Scholar 

  12. Soleimani, M., Hattabaugh, Y. J. & Bizal, G. L. pH sensitivity of the Na+:HCO3 cotransporter inbasolateral membrane vesicles isolated from rabbit kidney cortex. J. Biol. Chem. 267, 18349–18355 (1992).

    CAS  PubMed  Google Scholar 

  13. Yoshitomi, K., Burckhardt, B.-C. & Frömter, E. Rheogenic sodium-bicarbonate cotransport in the peribubular cell membrane of rat renal proximal tubule. Pflügers Arch. 405, 360–366 (1985).

    Article  CAS  Google Scholar 

  14. Soleimani, M., Grassl, S. M. & Aronson, P. S. Stoichiometry of Na+ -HCO3, cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. J. Clin. Invest. 79, 1276–1280 (1987).

    Article  CAS  Google Scholar 

  15. Newman, E. A. & Astion, M. L. Localization and Stoichiometry of electrogenic sodium bicarbonate cotransport in retinal glial cells. Glia 4, 424–428 (1991).

    Article  CAS  Google Scholar 

  16. Newman, E. A. Acid efflux from retinal glial cells generated by sodium bicarbonate cotransport. J. Neurosci. 16, 159–168 (1996).

    Article  CAS  Google Scholar 

  17. Fitz, J. G., Persico, M. & Scharschmidt, B. F. Electrophysiological evidence for Na+-coupled bicarbonate transport in cultured rat hepatocytes. Am. J. Physiol. (Lond.) 256, G491–G500 (1989).

    CAS  Google Scholar 

  18. Gleeson, D., Smith, N. D. & Boyer, J. L. Bicarbonate-dependent and -independent intracellular pH regulatory mechanisms in rat hepatocytes. J. Clin. Invest. 84, 312–321 (1989).

    Article  CAS  Google Scholar 

  19. Weintraub, W. H. & Machen, T. E. pH regulation in hepa;toma cells: roles of Na-H exchange, C1-HCO3 exchange, and Na-HCO3 cotransport. Am. J. Physiol. 257, G317–G327 (1989).

    CAS  PubMed  Google Scholar 

  20. Ishiguro, H., Steward, M. C., Lindsay, A. R. G. & Case, R. M. Accumulation of intracellular HCO3 by Na+-HCO3, cotransport in interlobular ducts from the guinea-pig pancreas. J. Physiol. (Lond.) 495, 169–178 (1996).

    Article  CAS  Google Scholar 

  21. Rajendran, V. M., Oesterlin, M. & Binder, H. J. Sodium uptake across basolateral membrane of rat distal colon. Evidence for Na-H exchange and Na-Anion cotransport. J. Clin. Invest. 88, 1379–1385 (1991).

    Article  CAS  Google Scholar 

  22. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, NY, 1989).

    Google Scholar 

  23. Hediger, M. A., Coady, M. J., Ikeda, T. S. & Wright, E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330, 379–381 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Kanai, Y. & Hediger, M. A. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360, 467–471 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Hediger, M. A. & Rhoads, D. B. Molecular physiology of sodium-glucose cotrasporters. Phys. Rev. 74, 993–1026(1994).

    CAS  Google Scholar 

  26. Reithmeier, R. A. F. The erythrocyte anion transporter (band 3). Curr. Opin. Struct. Biol. 3, 515–523 (1993).

    Article  MathSciNet  CAS  Google Scholar 

  27. Alper, S. L. The band 3-related anion exchanger (AE) gene family. Annu. Rev. Physiol. 53, 549–564 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, M., Hediger, M., Boulpaep, E. et al. Expression cloning and characterization of a renal electrogenic Na+ /HCO3 cotransporter. Nature 387, 409–413 (1997). https://doi.org/10.1038/387409a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387409a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing