Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy

Abstract

Progressive myoclonus epilepsy of the Unverricht–Lundborg type (EPM1; MIM 254800) is an autosomal recessive disorder with onset between 6 and 13 years followed by variable progression to mental deterioration and cerebellar ataxia1. It is a rare disorder but more common in Finland (1 in 20,000) and the western Mediterranean1,2. Two point mutations in the cysteine proteinase inhibitor gene cystatin B (CSTB), proved that this gene is responsible for EPM1 (ref. 3). An extensive search in the CSTB gene revealed mutations accounting only for 14% of the 58 unrelated EPM1 alleles studied4. Here we report that the majority of EPM1 alleles contain expansions of a dodecamer (12-mer) repeat located about 70 nucleotides upstream of the transcription start site nearest to the 5′ end of the CSTB gene. Normal alleles contain 2 or 3 copies of this repeat whereas mutant alleles contain more than 60 such repeats and have reduced levels of CSTB messenger RNA in blood but not in cell lines. 'Premutation' CSTB alleles with 12–17 repeats show marked instability when transmitted to offspring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Norio, R. & Koskiniemi, M. Progressive myoclonus epilepsy: genetic and nosological aspects with special reference to 107 Finnish patients. Clin. Genet. 15, 82–398 (1979).

    Google Scholar 

  2. Genton, P., Michelucci, R., Tassinari, C. A. & Roger, J. The Ramsay-Hunt syndrome revisited: Mediterranean myoclonus versus mitochondrial encephalomyopathy with ragged-red fibers and Baltic myoclonus. Acta Neural. Scand. 81, 8–15 (1990).

    Article  CAS  Google Scholar 

  3. Pennacchio, L. A. et al. Mutations in the gene encoding Cystatin B in progressive myoclonus epilepsy (EPM1). Science 271, 1731–1734 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lalioti, M. D. et al. Identification of mutations in Cystatin B, the gene responsible for the Unverricht-Lundborg type of progressive myoclonus epilepsy (EPM1). Am. J. Hum. Genet. 60, 342–351 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lafrenière, R. G. et al. Unstable insertion in the 5′ flanking region of the cystatin B gene is the most common mutation in progressive myoclonus epilepsy type 1, EPM1. Nature Genet. 15, 298–302 (1997).

    Article  PubMed  Google Scholar 

  6. Lehesjoki, A.-E. et al. Localisation of the EPM1 gene for progressive myoclonus epilepsy on chromosome 21: linkage disequilibrium allows high resolution mapping. Hum. Mol. Genet. 2, 1229–1234 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Dausset, J. et al. Centre d'etude du polymorphisme humain (CEPH): collaborative genetic mapping of the human genome. Genomics 6, 575– 577 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Talbot, C. C. et al. The tetranucleotide repeat polymorphism D21S1245 demonstrates hypermutabiity in germline and somatic cells. Hum. Mol. Genet. 4, 1193–1199 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Labauge, P. et al. Allelic heterogeneity of Mediterranean myoclonus. Ann. Neurol. (in the press).

  10. Paulson, H. L. & Fischbeck, K. H. Trinucleotide repeats in neurogenetic disorders. Annu. Rev. Neurosci. 19, 79–107 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Ashley, C. T. & Warren, S. T. Trinucleotide repeat expansion and human disease. Annu. Rev. Genet. 29, 703–728 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Richards, R. I. & Sutherland, G. R. Dynamic mutations: a new class of mutations causing human disease. Cell 70, 709–712 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Yu, S. et al. Human chromosomal fragile site FRA16B is an amplified AT-rich minisatellite repeat. Cell 88, 367–374 (1996).

    Article  Google Scholar 

  15. Turk, V. & Bode, W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 285, 213–219 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Pieretti, M. et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Gecz, J., Gedeon, A. K., Sutherland, G. R. & Mulley, J. C. Identification of the gene FMR2, associated with FRAXE mental retardation. Nat. Genet. 13, 105–108 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Gu, Y., Shen, Y., Gibbs, R. A. & Nelson, D. L. Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nat. Genet. 13, 109–113 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Fu, Y.-H. et al. Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science 260, 235–238 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Sabouri, L. A. et al. Effect of the myotonic dystrophy (DM) mutation on mRNA levels of the DM gene. Nature Genet. 4, 233–238 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Oberle, I. et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252, 1097–1102 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Knight, S. J. L. et al. Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74, 127–134 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Verkerk, A. J. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Brook, J. D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (GTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Mach, B., Steimle, V., Martinez-Soria, E. & Reith, W. Regulation of MHC class II genes: lessons from a disease. Annu. Rev. Immunol. 14, 301–331 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Levine, M. & Manley, J.-L. Transcriptional repression of eukaryotic promoters. Cell 59, 405–408 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Youssoufian, H. & Lodish, H. F. Transcriptional inhibition of the murine erythropoietin receptor gene by an upstream repetitive element. Mol. Cell. Biol. 13, 98–104 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rawlings, N. D. & Barrett, A. J. Families of cysteine peptidases. Meth. Enzymol. 244, 461–486 (1994).

    Article  CAS  Google Scholar 

  29. Takahashi, A. & Earnshaw, W. C. ICE-related proteases in apoptosis. Curr. Opin Genet. Dev. 6, 50–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Pennacchio, L. A. & Myers, R. M. Isolation and characterization of the mouse cystatin B gene. Genome Res. 6, 1103–1109 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalioti, M., Scott, H., Buresi, C. et al. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 386, 847–851 (1997). https://doi.org/10.1038/386847a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386847a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing