Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for a selectively favourable reduction in the mutation rate of the X chromosome

Abstract

The equilibrium per-genome mutation rate in sexual species is thought to result from a trade-off between the benefits of reducing the deleterious mutation rate and the costs of increasing fidelity1,2. We propose that selection will often favour a lower mutation rate on the X chromosome than on autosomes, owing to the exposure of deleterious recessive mutations on hemizygous chromosomes. We tested this hypothesis by examining 33 X-linked genes that have been sequenced in both mouse and rat, and compared their rate of evolution against 238 autosomal genes. The X-linked genes were found to have a significantly lower rate of synonymous substitution than the autosomal genes. Neither the supposed higher mutation rate in males nor stronger purifying selection against slightly deleterious mutations on the X chromosome can account for the low value. The most parsimonious explanation is that rodents have a lower mutation rate on the X chromosome than on autosomes. It is therefore likely that previous indirect estimates of the excess male mutation rate are inaccurate. Indeed, after correction we find no evidence for a male-biased mutation rate in rodents. Furthermore, the rate of synonymous substitution in Y-linked genes is not significantly different from that in autosomal ones. The extent to which enhanced male mutation rates are problematic3 for the mutational deterministic model4 of the evolution of sex must, in turn, be questioned.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Leigh, E. G. Natural selection and mutability. Am. Nat. 104, 301–305 (1970).

    Article  Google Scholar 

  2. Kondrashov, A. S. Modifiers of mutation-selection balance: general-approach and the evolution of mutation-rates. Genet. Res. 66, 53–69 (1995).

    Article  Google Scholar 

  3. Redfield, R. J. Male mutation rates and the cost of sex for females. Nature 369, 145–147 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Kondrashov, A. S. Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–440 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Kimura, M. On the evolutionary adjustment of mutation rates. Genet. Res. 9, 23–34 (1967).

    Article  ADS  Google Scholar 

  6. Miyata, T., Hayashida, H., Kuma, K., Mitsuyasu, K. & Yasunaga, T. Male-driven molecular evolution: a model and nucleotide sequence analysis. Cold Spring Harb. Symp. Quant. Biol. 52, 863–867 (1987).

    Article  CAS  Google Scholar 

  7. Chang, B. H. J., Shimmin, L. C., Shyue, S. K., Hewett-Emmett, D. & Li, W.-H. Weak male-driven molecular evolution in rodents. Proc. Natl Acad. Sci. USA 91, 827–831 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Chang, B. H. J. & Li, W.-H. Estimating the intensity of male-driven evolution in rodents by using X-linked and Y-linked Ube-1 genes and pseudogenes. J. Mol. Evol. 40, 70–77 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Bulmer, M. G. Principles of Statistics (Dover, New York, 1979).

    MATH  Google Scholar 

  10. Shimmin, L. C., Chang, B. H. J., Hewett-Emmett, D. & Li, W.-H. Potential problems in estimating the male-to-female mutation-rate ratio from DNA-sequence data. J. Mol. Evol. 37, 160–166 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Li, W.-H. Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons. J. Mol. Evol. 24, 337–345 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Crow, J. F. & Simmonds, M. J. in The Genetics and Biology of Drosophila (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 1–35 (Academic, London, 1983).

    Google Scholar 

  13. Wolfe, K. H. & Sharp, P. M. Mammalian gene evolution: nucleotide sequence divergence between mouse and rat. J. Mol. Evol. 37, 441–456 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Sharp, P. M. in Evolution and Animal Breeding: Reviews on Molecular and Quantitative Approaches in Honour of Alan Robertson (eds Hill, W. G. & Mackay, T. F. C.) 24–32 (CAB International, Wallingford, UK, 1989).

    Google Scholar 

  15. Wolfe, K. H., Sharp, P. M. & Li, W.-H. Mutation rates differ among regions of the mammalian genome. Nature 337, 283–285 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Eyre-Walker, A. An analysis of codon usage in mammals: selection or mutation bias? J. Mol. Evol. 33, 442–449 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Ohta, T. An examination of the generation time effect on molecular evolution. Proc. Natl Acad. Sci. USA 90, 10676–10680 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Li, W.-H., Ellsworth, D. L., Krushkal, J., Chang, B. H. J. & Hewett-Emmett, D. Rates of nucleotide substitution in primates and rodents and the generation time effect hypothesis. Mol. Phylogen. Evol. 5, 182–187 (1996).

    Article  CAS  Google Scholar 

  19. Charlesworth, B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet. Res. 63, 213–227 (1994).

    Article  CAS  Google Scholar 

  20. Charlesworth, B., Coyne, J. A. & Barton, N. H. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130, 113–146 (1987).

    Article  Google Scholar 

  21. Jeffreys, A. J. et al. Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136–145 (1994).

    Article  CAS  Google Scholar 

  22. Ketterling, R. P. et al. Germ-line origins of mutation in families with hemophilia-B: the sex-ratio varies with the type of mutation. Am. J. Hum. Genet. 52, 152–166 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Driscoll, D. J. & Migeon, B. R. Sex difference in methylation of single-copy genes in human meiotic germ-cells-implications for X-chromosome inactivation, parental imprinting, and origin of CpG mutations. Somat. Cell Mol. Genet. 16, 267–282 (1990).

    Article  CAS  Google Scholar 

  24. Hurst, L. D. & Peck, J. R. Recent advances in understanding of the evolution and maintenance of sex. Trends Ecol. Evol. 11, A46–A52 (1996).

    Article  Google Scholar 

  25. Gillespie, J. H. On Ohta's hypothesis: most amino acid substitutions are deleterious. J. Mol. Evol. 40, 64–69 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Mouse Genome Database 3.1, Mouse Genome Informatics (Jackson Laboratory, Bar Harbor, ME, 1996). URL:http://www.informatics.jax.org/.

  27. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  28. GCG Wisonsin Package Version 8, manual (Genetics Computer Group, Madison, WI, 1994).

  29. Li, W.-H., Wu, C.-I. & Luo, C.-C. A new method for estimating synonymous and non-synonymous rates of nucelotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2, 150–174 (1985).

    PubMed  Google Scholar 

  30. Li, W.-H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J. Mol. Evol. 36, 96–99 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McVean, G., Hurst, L. Evidence for a selectively favourable reduction in the mutation rate of the X chromosome. Nature 386, 388–392 (1997). https://doi.org/10.1038/386388a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386388a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing