Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb

Abstract

Vertebrate limb outgrowth requires a structure called the apical ectodermal ridge, formation of which follows the previous establishment of the dorsoventral limb axis. Radical fringe is expressed in the dorsal ectoderm before the ridge appears, and is repressed by Engrailed-I, which is expressed in the ventral ectoderm. Misexpression of these genes indicates that a ridge is formed wherever there is a boundary between cells expressing and not expressing Radical fringe. Thus, as in Drosophila, Radical fringe positions the ridge at the dorsoventral limb boundary.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Saunders, J. W. & Gasseling, M. T. in Epithelial-Mesenchymal Interactions (eds Fleischmajer, R. & Billingham, R. E.) 78–97 (Baltimore, 1968).

    Google Scholar 

  2. Tickle, C., Summerbell, D. & Wolpert, L. Positional signalling and specification of digits in chick limb morphogenesis. Nature 254, 199–202 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Pautou, M. P. & Kieny, M. Interaction ec-mesodermique dans l'establissement de la polarité dorso-ventrale du pied de l'embryon de poulet. C. r. hebd Séanc. Acad. Sci., Paris D 277, 1225–1228 (1973).

    Google Scholar 

  4. MacCabe, J. A., Errick, J. E. & Saunders, J. W. J. Ectodermal control of the dorso-ventral axis in the leg bud of the chick embryo. Dev. Biol. 39, 69–82 (1974).

    Article  CAS  PubMed  Google Scholar 

  5. Saunders, J. W. J. The proximo-distal sequence of the origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108, 363–404 (1948).

    Article  PubMed  Google Scholar 

  6. Todt, W. & Fallon, J. F. Development of the apical ectodermal ridge in the chick wing bud. J. Embryol. Exp. Morphol. 80, 21–41 (1984).

    CAS  PubMed  Google Scholar 

  7. Duboule, D. How to make a limb? Science 266, 575–576 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Maden, M. The limb bud—part two. Nature 371, 560–561 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Martin, G. Why thumbs are up. Nature 374, 410–411 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Tabin, C. The initiation of the limb bud: Growth factors, Hox genes, and retinoids. Cell 80, 671–674 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Parr, B. A. & McMahon, A. P. Dorsalizing signal Wnt-7a required for normal polarity of D–V and A–P axes of mouse limb. Nature 374, 350–353 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Yang, Y. Z. & Niswander, L. Interaction between the signaling molecules Wnt7a and shh during vertebrate limb development-dorsal signals regulated anteroposterior patterning. Cell 80, 939–947 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Riddle, R. et al. Induction of the LIM Homeobox gene Lmx-1 by Wnt7a establishes dorsoventral pattern in the vertebrate limb. Cell 83, 631–640 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Vogel, A., Rodriguez, C., Warnken, W. & Izpisúa Belmonte, J. C. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature 378, 716–720 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Loomis, C. A. et al. The mouse Engrailed-1 gene and ventral limb patterning. Nature 382, 360–363 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Niswander, L., Tickle, C., Vogel, A., Booth, I. & Martin, G. R. FGF-4-replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 579–587 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Niswander, L., Jeffrey, S., Martin, G. R. & Tickle, C. A. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Fallon, J. F. et al. FGF-2: Apical ectodermal ridge growth signal for chick limb development. Science 264, 104–107 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ohuchi, H. et al. An additional limb can be induced form the flank of the chick embryo by FGF4. Biochem. Biophys. Res. Commun. 209, 809–816 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Cohn, M., Izpisúa Belmonte, J. C., Abud, H., Heath, J. K. & Tickle, C. FGF-2 application can induce additional limb formation from the flank of chick embryos. Cell 80, 739–746 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Laufer, E., Nelson, C. E., Johnson, R. L., Morgan, B. A. & Tabin, C. Sonic hedgehog and Fgf-4 act through a signalling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Mahmood, R. et al. A role for FGF8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr. Biol. 5, 797–806 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Crossley, P. H., Minowada, G., MacArthur, C. A. & Martin, G. R. Roles for FGF-8 in the induction, initiation and maintenance of chick limb development. Cell 84, 127–136 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Vogel, A., Rodriguez, C. & Izpisúa Belmonte, J. C. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750 (1996).

    CAS  PubMed  Google Scholar 

  25. Irvine, K. D. & Wieschaus, E. Fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79, 595–606 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J., Irvine, K. D. & Carroll, S. B. Cell recognition, signal induction, and symmetrical gene activation at the dorsal-ventral boundary of the developing Drosophila wing. Cell 82, 795–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Diaz-Benjumea, F. J. & Cohen, S. M. Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development 121, 4215–4225 (1995).

    CAS  PubMed  Google Scholar 

  28. Kim, J. et al. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature 382, 133–138 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Neumann, C. J. & Cohen, S. M. A hierarchy of cross-regulation involving Notch, wingless, vestigal and cut organizes the dorsal-ventral axis of the Drosophila wing. Development 122, 3477–3485 (1996).

    CAS  PubMed  Google Scholar 

  30. De Celis, J. F., Garcia-Bellido, A. & Bray, S. J. Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development 122, 359–369 (1996).

    CAS  PubMed  Google Scholar 

  31. Wu, J. Y., Wen, L., Zhang, W.-J. & Rao, Y. The secreted product of Xenopus gene lunatic fringe, a vertebrate signaling molecule. Science 273, 355–358 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yuan, Y. P., Schultz, J., Mlodzik, M. & Bork, P. Secreted Fringe-like signalling molecules may be glycosyltransferases. Cell 88, 9–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Cope, L. D. et al. Molecular cloning of a gene involved in lipooligosaccharide biosynthesis and virulence expression by Haemophilus influenzae type B. Mol. Microbiol. 5, 1113–1124 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Hamburger, V. & Hamilton, H. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).

    Article  CAS  PubMed  Google Scholar 

  35. Ros, M. A. et al. The limb field mesoderm determines initial limb bud anteroposterior asymmetry and budding independent of sonic hedgehog or apical ectodermal gene expressions. Development 122, 2319–2330 (1996).

    CAS  PubMed  Google Scholar 

  36. Laufer, E. et al. Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 386, 366–373 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Couso, J. P., Kust, E. & Martinez Arias, A. Serrate and wingless in Drosophila wing development. Curr. Biol. 5, 1437–1448 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Goodrich, L. V., Johnson, R. L., Milenkovic, L., McMahon, J. A. & Scott, M. P. Conservation of the Hedgehog/patched/signaling pathway from flies to mice: Induction of a mouse patched gene by Hedgehog. Genes Dev. 10, 301–312 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of theZPA. Cell 75, 1401–1416 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Francis, P. H., Richardson, M. K., Brickell, P. M. & Tickle, C. Bone morphogenetic proteins and a signaling pathway that controls pattern in the developing chick limb. Development 120, 209–218 (1994).

    CAS  PubMed  Google Scholar 

  41. Marigo, V., Scott, M. P., Johnson, R. L., Goodrich, L. V. & Tabin, C. J. Conservation in hedgehog signaling: induction of a chicken patched homolog by sonic hedgehog in the developing limb. Development 122, 1225–1233 (1996).

    CAS  PubMed  Google Scholar 

  42. Zecca, M., Basler, K. & Struhl, G. Sequential organizing activities of engrailed hedgehog and decapentaplegic in the Drosophila wing. Development 121, 2265–2278 (1995).

    CAS  PubMed  Google Scholar 

  43. Myat, A., Henrique, D., Ish-Horowicz, D. & Lewis, J. A chick homologue of serrate and its relationship with notch and delta homologues during central neurogenesis. Dev. Biol. 174, 233–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Shawber, C. J., Boulter, J. & Weinmaster, G. Jagged2: a serrafe-like gene expressed during rat embryogenesis. Dev. Biol. 180, 370–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Bellido, A. How organisms are put together. Eur. Rev. 2, 15–21 (1994).

    Article  Google Scholar 

  46. Izpisúa Belmonte, J. C., Falkenstein, H., Dolle, P., Renucci, A. & Duboule, D. Murine genes related to the Drosophila AbdB homeotic gene are sequentially expressed during development of the posterior part of the body. EMBO J. 10, 2279–2289 (1991).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Izpisúa Belmonte, J. C., De Robertis, E. M., Storey, K. G. & Stern, C. The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74, 645–659 (1993).

    Article  PubMed  Google Scholar 

  48. Izpisúa Belmonte, J. C., Tickle, C., Dolle, P., Wolpert, L. & Duboule, D. Expression of the homeobox Hox-4 genes and the specification of position in chick wing development. Nature 350, 585–589 (1991).

    Article  ADS  PubMed  Google Scholar 

  49. Morgan, B. A., Izpisúa Belmonte, J. C., Duboule, D. & Tabin, C. J. Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358, 236–239 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Hughes, S., Greenhouse, J., Petropoulos, J. & Sutrave, P. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J. Virol. 61, 3004–3012 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gilbert, S. F. Dev. Biol. (Sinauer, Sunderland, MA, 1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Esteban, C., Schwabe, J., Peña, J. et al. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 386, 360–366 (1997). https://doi.org/10.1038/386360a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386360a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing