Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vegetation-induced warming of high-latitude regions during the Late Cretaceous period

Abstract

Modelling studies of pre-Quaternary (>2 million years ago) climate implicate atmospheric carbon dioxide concentrations1, land elevation2 and land–sea distribution3–5 as important factors influencing global climate change over geological timescales. But during times of global warmth, such as the Cretaceous period and Eocene epoch, there are large discrepancies between model simulations of high-latitude and continental-interior temperatures and those indicated by palaeotemperature records6,7. Here we use a global climate model for the latest Cretaceous (66 million years ago) to examine the role played by high- and middle-latitude forests in surface temperature regulation. In our simulations, this forest vegetation warms the global climate by 2.2 °C. The low-albedo deciduous forests cause high-latitude land areas to warm, which then transfer more heat to adjacent oceans, thus delaying sea-ice formation and increasing winter temperatures over coastal land. Overall, the inclusion of some of the physical and physiological climate feedback effects of high-latitude forest vegetation in our simulations reduces the existing discrepancies between observed and modelled climates of the latest Cretaceous, suggesting that these forests may have made an important contribution to climate regulation during periods of global warmth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barron, E. J., Fawcett, P. J., Pollard, D. & Thompson, S. Phil. Trans. R. Soc. Lond. B 341, 307–315 (1993).

    Article  ADS  Google Scholar 

  2. Otto-Bliesner, B. L. Geophys. Res. Lett. 20, 1947–1950 (1993).

    Article  ADS  Google Scholar 

  3. Barron, E. J. & Washington, W. M. J. Geophys. Res. 89, 1267–1279 (1984).

    Article  ADS  Google Scholar 

  4. Crowley, T. J., Short, D. A., Mengel, J. G. & North, G. R. Science 231, 579–584 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Otto-Bliesner, B. L. J. Geophys. Res. 100, 11537–11548 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Barron, E. J. & Washington, W. M. Palaeogeogr. Palaeoclimatol. Palaeoecol. 40, 103–133 (1982).

    Article  Google Scholar 

  7. Wing, S. L. & Greenwood, D. R. Phil. Trans. R. Soc. Lond. B 341, 243–252 (1993).

    Article  ADS  Google Scholar 

  8. Thompson, S. L. & Pollard, D. J. Clim. 8, 732–761 (1995).

    Article  ADS  Google Scholar 

  9. Pollard, D. & Thompson, S. L. Glob. Planet. Change 10, 129–161 (1995).

    Article  ADS  Google Scholar 

  10. Dorman, J. L. & Sellers, P. J. J. Appl. Meteorol. 28, 833–855 (1989).

    Article  ADS  Google Scholar 

  11. Berner, R. A. Am. J. Sci. 294, 56–91 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Andrews, J. E., Tandon, S. K. & Dennis, D. F. J. Geol Soc. Lond. 152, 1–3 (1995).

    Article  CAS  Google Scholar 

  13. Scotese, C. R., Gahagan, L. M. & Larson, R. L. Tectonophysics 155, 27–48 (1988).

    Article  ADS  Google Scholar 

  14. Ziegler, A. M. et al. Annu. Rev. Earth Planet. Sci. 13, 385–425 (1985).

    Article  ADS  Google Scholar 

  15. Hay, W. W. Proc. 27th Int. Geol. Congr. Vol. 6, 15–38 (VNU Science Press, Amsterdam, 1984).

    Google Scholar 

  16. Crowley, T. J. & Baum, S. K. Geology 20, 507–510 (1992).

    Article  ADS  Google Scholar 

  17. Creber, G. T. & Chaloner, W. G. Palaeogeogr. Palaeoclimatol. Palaeoecol. 52, 35–60 (1985).

    Article  Google Scholar 

  18. Horrell, M. A. Palaeogeogr. Palaeoclimatol. Palaeoecol. 86, 87–138 (1991).

    Article  Google Scholar 

  19. Wolfe, J. A. & Upchurch, G. R. Jr Palaeogeogr. Palaeoclimatol. Palaeoecol. 61, 33–77 (1987).

    Article  Google Scholar 

  20. Muller, J. Bot. Rev. 47, 1–142 (1981).

    Article  Google Scholar 

  21. Crepet, W. L. & Feldman, G. D. Am. J. Bot. 78, 1010–1014 (1991).

    Article  Google Scholar 

  22. Köppen, W. in Handbuch der Klimatologie (eds Köppen, W. & Geiger, R.) (C-1–C-44 Gebruder Borntraeger, Berlin, 1936).

    Google Scholar 

  23. Wolfe, J. A. US Geol. Surv. Prof. Pap. 1106 (1979).

  24. Box, E. O. Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography (Junk, The Hague, 1981).

    Book  Google Scholar 

  25. Parrish, J. T. & Spicer, R. A. Geology 16, 22–25 (1988).

    Article  ADS  Google Scholar 

  26. Spicer, R. A. & Parrish, J. T. J. Geol. Soc. Lond. 147, 329–341 (1990).

    Article  Google Scholar 

  27. Wolfe, J. A. Nature 343, 153–156 (1990).

    Article  ADS  Google Scholar 

  28. Farrell, B. F. J. Atmos. Sci. 47, 2986–2995 (1990).

    Article  ADS  Google Scholar 

  29. Herman, A. B. & Spicer, R. A. Nature 380, 330–333 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Rind, D. & Chandler, M. J. Geophys. Res. 96, 7437–7461 (1991).

    Article  ADS  Google Scholar 

  31. Valdes, P. J., Sellwood, B. W. & Price, G. D. Palaeoclimates 2, 139–158 (1996).

    Google Scholar 

  32. Crowley, T. J. Paleoceanography 6, 387–397 (1991).

    Article  ADS  Google Scholar 

  33. Bonan, G. B., Pollard, D. & Thompson, S. L. Nature 359, 716–718 (1992).

    Article  ADS  Google Scholar 

  34. Foley, J. A., Kutzbach, J. E., Coe, M. T. & Levis, S. Nature 359, 716–718 (1992).

    Article  Google Scholar 

  35. Thomas, G. & Rowntree, P. F. Q. J. R. Meteorol. Soc. 118, 469–497 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otto-Bliesner, B., Upchurch, G. Vegetation-induced warming of high-latitude regions during the Late Cretaceous period. Nature 385, 804–807 (1997). https://doi.org/10.1038/385804a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385804a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing