Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks

Abstract

THE abundance of short and long interspersed nuclear sequences (SINEs and LINEs) and pseudogenes in eukaryotic genomes indicates that reverse transcriptase (RT)-mediated phenomena are important in genome evolution. However, the mechanisms involved in their spread are largely unknown. We have developed a selection system in the yeast Saccharomyces cerevisiae to test whether RT-mediated events could be linked to the repair of double-strand breaks (DSBs). Here we show that DSBs can be fixed by the insertion of complementary DNAs at the break site. In the presence of functional RT (from human LI, yeast Tyl or Crithidia CRE1), and in the absence of homologous recombination, an HO endonuclease-induced DSB at the mating type (MAT) locus is the primary site at which a marked cDNA is observed among surviving cells. The structure and junctional sequences of these insertions suggest that repair occurs primarily by non-homologous recombination. Our data support a role for endogenous retroelements in the repair of chromosomal breaks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boeke, J. D., Garfinkel, D. J., Styles, C. A. & Fink, G. R. Cell 40, 491–500 (1985).

    Article  CAS  Google Scholar 

  2. Derr, L. K. & Strathern, J. N. Nature 361, 170–173 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Dombroski, B. A. et al. Mol. Cell. Biol. 14, 4485–4492 (1994).

    Article  CAS  Google Scholar 

  4. Nissley, D. V., Garfinkel, D. J. & Strathern, J. N. Nature 380, 30 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Zou, S., Wright, D. A. & Voytas, D. F. Proc. Natl. Acad. Sci. USA 92, 920–924 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Curcio, M. J. & Garfinkel, D. J. Proc. Natl Acad. Sci. USA 88, 936–940 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Derr, L. K., Strathern, J. N. & Garfinkel, D. J. Cell 67, 355–364 (1991).

    Article  CAS  Google Scholar 

  8. Mathias, S. L., Scott, A. F., Kazazian, H. H. Jr, Boeke, J. D. & Gabriel, A. Science 254, 1808–1810 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Hutchison, C. A., Hardies, S. C., Loeb, D. D., Shehee, W. R. & Edgell, M. H. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 593–617 (American Society of Microbiology, Washington DC, 1989).

    Google Scholar 

  10. Herskowitz, I., Rine, J. & Strathern, J. N. in The Molecular and Cellular Biology of the Yeast Saccharomyces (eds Jones, E. W., Pringle, J. R. & Broach, J. R.) 583–656 (Cold Spring Harbor Laboratory Press, NY, 1992).

    Google Scholar 

  11. Haber, J. E. Bioessays 17, 609–620 (1995).

    Article  CAS  Google Scholar 

  12. Gabriel, A. et al. Mol. Cell. Biol. 10, 615–624 (1990).

    Article  CAS  Google Scholar 

  13. Sharon, G., Burkett, T. J. & Garfinkel, D. J. Mol. Cell. Biol. 14, 6540–6551 (1994).

    Article  CAS  Google Scholar 

  14. Gabriel, A. & Boeke, J. D. Proc. Natl Acad. Sci. USA 88, 9794–9798 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Roth, D. & Wilson, J. in Genetic Recombination (eds Kucherlapati, R. & Smith, G. R.) 621–653 (American Society for Microbiology, Washington DC, 1988).

    Google Scholar 

  16. George, J. A., Burke, W. D. & Eickbush, T. H. Genetics 142, 853–863 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Moore, J. K. & Haber, J. E. Nature 383, 644–646 (1996).

    Article  ADS  Google Scholar 

  18. Luan, D. D., Korman, M. H., Jakubczak, J. L. & Eickbush, T. H. Cell 72, 595–605 (1993).

    Article  CAS  Google Scholar 

  19. Sheen, F. & Levis, R. W. Proc. Natl Acad. Sci. USA 91, 12510–12514 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Zimmerly, S., Guo, H., Perlman, P. S. & Lambowitz, A. M. Cell 82, 545–554 (1995).

    Article  CAS  Google Scholar 

  21. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H. Nucleic Acids Res. 20, 1425 (1992).

    Article  CAS  Google Scholar 

  22. Curcio, M. J. & Garfinkel, D. J. Genetics 136, 1245–1259 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Monokian, G. M., Braiterman, L. T. & Boeke, J. D. Gene 139, 9–18 (1994).

    Article  CAS  Google Scholar 

  24. Boeke, J. D., Xu, H. & Fink, G. R. Science 239, 280–282 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Moore, J. K. & Haber, J. E. Mol. Cell. Biol. 16, 2164–2173 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, SC., Kim, B. & Gabriel, A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383, 641–644 (1996). https://doi.org/10.1038/383641a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383641a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing