Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orographic control of storm zones on Mars

Abstract

Low-pressure cyclones and their accompanying frontal systems in the middle latitudes of the Earth's troposphere develop, travel eastwards and decay preferentially within latitudinally and longitudinally confined geographical regions known as storm zones1. These zones can be readily identified in the circulation statistics of terrestrial weather systems2. Mars, like the Earth, is a rapidly rotating solid planet and has a seasonally varying shallow atmosphere, large-scale orography, and (in a broadly defined context) continental structures3. Although there are also important differences between the two planets, travelling weather systems do exist on Mars3. This raises the question of whether storm zones also occur there, and if so, by what mechanisms. Here we report the results of numerical simulations of global atmospheric circulation patterns on Mars. We find that storm zones can exist during the northern winter, and that continental-scale orography (rather than surface thermal contrasts) is the main factor determining the development of these zones. Storm zones on Mars should play an important role in the martian climate cycle4,5, by influencing the transport of (for example) heat, momentum, water vapour and atmospheric dust3,6–8 towards the poles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. James, I. N. Introduction to Circulating Atmospheres (Cambridge Univ. Press, 1994).

    Book  Google Scholar 

  2. Wallace, J. M., Lim, G.-H. & Blackmon, M. L. J. atmos. Sci. 45, 439–462 (1988).

    Article  ADS  Google Scholar 

  3. Zurek, R. W. et al. in Mars (eds Keiffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 835–933 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  4. Kahn, R., Martin, T. Z., Zurek, R. W. & Lee, S. W. in Mars (eds Keiffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 1017–1053 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  5. Jakosky, B. M. & Haberle, R. M. in Mars (eds Keiffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 969–1016 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  6. Blumsack, S. L. & Gierasch, P. J. J. atmos. Sci. 29, 1081–1089 (1972).

    Article  ADS  Google Scholar 

  7. Barnes, J. R. J. atmos. Sci. 41, 1536–1550 (1984).

    Article  ADS  Google Scholar 

  8. Barnes, J. R. et al. J. geophys. Res. 98, 3125–3148 (1993).

    Article  ADS  Google Scholar 

  9. Barnes, J. R. J. atmos. Sci. 37, 2002–2015 (1980); 38, 225–234 (1981).

    Article  ADS  Google Scholar 

  10. Pollack, J. B., Haberle, R. M., Schaeffer, J. & Lee, H. J. geophys. Res. 95, 1447–1473 (1990).

    Article  ADS  Google Scholar 

  11. Kieffer, H. H., Davis, P. A. & Soderblom, L. A. in Proc. Lunar planet. Sci. Conf. 12, 1395–1417 (1982).

    ADS  Google Scholar 

  12. Haberle, R. H. et al. J. geophys. Res. 98, 3093–3124 (1993).

    Article  ADS  Google Scholar 

  13. Hoskins, B. J. in Large-Scale Dynamical Processes in the Atmosphere (eds Hoskins, B. & Pearce, R.) 169–199 (Academic, San Diego, 1983).

    Google Scholar 

  14. Hoskins, B. J., James, I. N. & White, G. H. J. atmos. Sci. 40, 1595–1612 (1983).

    Article  ADS  Google Scholar 

  15. Grotjahn, R. Global Atmospheric Circulations: Observations and Theories (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  16. Hoskins, B. J. & Valdes, P. J. J. atmos. Sci. 47, 1854–1864 (1990).

    Article  ADS  Google Scholar 

  17. Held, I. M. in Large-Scale Dynamical Processes in the Atmosphere (eds Hoskins, B. & Pearce, R.) 127–168 (Academic, San Diego, 1983).

    Google Scholar 

  18. Valdes, P. J. & Hoskins, B. J. J. atmos. Sci 46, 2509–2527 (1989).

    Article  ADS  Google Scholar 

  19. Hollingsworth, J. L. & Barnes, J. R. J. atmos. Sci. 53, 428–448 (1996).

    Article  ADS  Google Scholar 

  20. Mechoso, C. R. J. atmos. Sci. 37, 1393–1399 (1980).

    Article  ADS  Google Scholar 

  21. Greeley, R., Lancaster, N., Lee, S. & Thomas, P. in Mars (eds Keiffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 730–766 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  22. French, R. G., Gierasch, P. J., Popp, B. D. & Yerdon, R. J. Icarus 50, 468–493 (1981).

    Article  ADS  Google Scholar 

  23. Kahn, R. J. geophys. Res. 88, 10189–10209 (1983).

    Article  ADS  Google Scholar 

  24. Space Studies Board An Integrated Strategy for the Planetary Sciences: 1995–2010 (National Acad. Press, Washington DC, 1994).

  25. Pierrehumbert, R. T. & Swanson, K. L. A. Rev. Fluid Mech. 27, 419–467 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollingsworth, J., Haberle, R., Barnes, J. et al. Orographic control of storm zones on Mars. Nature 380, 413–416 (1996). https://doi.org/10.1038/380413a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380413a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing