Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magma fragmentation by rapid decompression

Abstract

THE processes leading to magma fragmentation and the generation of pyroclastic debris during explosive volcanic eruptions are of fundamental importance in volcanology. Observations of explosive eruptions1–3, as well as theoretical analyses of the underlying processes4, have raised the question of whether the rapid decompression of highly viscous, vesicular magma that results from the collapse of a lava dome or volcanic edifice can, in itself, produce explosive magma fragmentation and pyroclast formation. Here we report the results of a laboratory investigation of pyroclast formation following rapid decompression. Samples of magma from the 1980 eruption of Mount St Helens, when rapidly depressurized from initial pressures of up to 12 MPa (and at temperatures in the range 750–825 °C), fragmented to form pyroclastic products that are in many respects similar to those formed in real eruptions. Moreover, we observe explosive fragmentation at temperatures well below those normally associated with magmatic processes, suggesting that even relatively cool magma bodies can be very hazardous when subjected to rapid unloading events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rose, W. I. Jr, Pearson, T. & Bonis, S. Bull. volcan. 40, 53–70 (1976).

    Article  ADS  Google Scholar 

  2. Hoblitt, R. P., Miller, C. D. & Vallance, J. W. Prof. Pap. U.S. geol. Surv. 1250, 401–419 (1981).

    Google Scholar 

  3. Sato, H., Fujii, T. & Nakada, S. Nature 360, 664–666 (1992).

    Article  ADS  Google Scholar 

  4. Fink, J. H. & Kieffer, S. W. Nature 363, 612–615 (1993).

    Article  ADS  Google Scholar 

  5. Self, S., Wilson, L. & Nairn, I. A. Nature 277, 440–443 (1979).

    Article  ADS  Google Scholar 

  6. Eichelberger, J. C. & Hayes, D. B. J. geophys. Res. 87, 7727–7738 (1982).

    Article  ADS  Google Scholar 

  7. Mader, H. M. et al. Nature 372, 85–88 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Sugioka, I. & Bursik, M. Nature 373, 689–692 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Alidibirov, M. Eos 74, 621 (1993).

    Google Scholar 

  10. Kieffer, S. W. & Sturtevant, B. J. geophys. Res. 89, 8253–8268 (1984).

    Article  ADS  Google Scholar 

  11. Hoblitt, R. P. & Harmon, R. A. Bull. volcan. 55, 421–437 (1993).

    Article  ADS  Google Scholar 

  12. Cashman, K. V. Bull. volcan. 50, 194–209 (1988).

    Article  ADS  Google Scholar 

  13. Walker, G. P. L. J. Geol. 79, 696–714 (1971).

    Article  ADS  Google Scholar 

  14. Fisher, R. V. & Schmincke, H.-U. Pyroclastic Rocks 472 (Springer, Berlin, 1984).

    Book  Google Scholar 

  15. Anilkumar, A. V., Sparks, R. S. J. & Sturtevant, B. J. Volcan. geotherm. Res. 56, 145–160 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Litwiniszyn, J. Int. J. Rock Mech. Mining Sci.& Geomech. Abstr. 28, 501–508 (1991).

    Article  Google Scholar 

  17. Wohletz, K. H., McGetchin T. R., Sanford, M. T. & Jones, E. M. J. geophys. Res. 89, 8269–8286 (1984).

    Article  ADS  Google Scholar 

  18. Heiken, G. & Wohletz, K. in Sedimentation in Volcanic Settings (eds Fisher, R. V. & Smith, G. A.) 19–26 (Spec. Publ. 45, SEPM, Soc. for Sedimentary Geology, 1991).

    Book  Google Scholar 

  19. Alidibirov, M. Bull. volcan. 56, 459–465 (1994).

    Article  ADS  Google Scholar 

  20. Dingwell, D. B. & Webb, S. L. Phys. Chem. Miner. 16, 508–516 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Webb, S. L. & Dingwell, D. B. J. geophys. Res. 95, 15695–15701 (1990).

    Article  ADS  Google Scholar 

  22. Wohletz, K. H. J. Volcanol. geotherm. Res. 17, 31–63 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Zimanowski, B., Frölich, G. & Lorenz, V. Nucl. Engng Design 155, 335–343 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alidibirov, M., Dingwell, D. Magma fragmentation by rapid decompression. Nature 380, 146–148 (1996). https://doi.org/10.1038/380146a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380146a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing