Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean

Abstract

THE spreading of Antarctic Bottom Water—the densest global-scale water mass—is highly constrained by ocean-floor topography. In the Atlantic Ocean, the Mid-Atlantic Ridge confines this water mass mainly to the western basins, the bottom waters in the eastern basins being renewed by flows through gaps in the ridge1. One such gap is the Romanche fracture zone, a large offset of the ridge which straddles the Equator. It has been observed2 that sills within this fracture zone block the passage of waters colder than 0.9 °C; warmer, less dense waters passing over the sills appear to cascade downslope where they are modified by mixing. Here we present direct measurements which quantify these processes. The flow is vertically sheared and exhibits remarkably intense turbulence, comparable to that seen at the ocean surface in the presence of winds of l0ms −1. This turbulence mixes the densest waters passing through the fracture zone with the warmer, overlying waters, so that the coldest waters exiting this region have been warmed by 0.6 °C during transit. Topographic obstructions and turbulent mixing together thus determine the properties of the flows renewing the deepest waters of the Atlantic Ocean's eastern basins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wüst, G. Das Bodenwasser und die Gliedenung der Atlantischen Tiefsee. in Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs- und Vermes-sungsschiff “Meteor” 1925–1927, Vol. 6(1), 1–107 (Gruyter, Berlin, 1933).

    Google Scholar 

  2. Mercier, H., Speer, K. G. & Honnorez, J. Deep-Sea Res. 41, 1457–1477 (1994).

    Article  Google Scholar 

  3. Garrett, C. & Munk, W. Deep-Sea Res. 19, 823–832 (1972).

    Google Scholar 

  4. Gargett, A. E. & Holloway, G. J. mar. Res. 42, 15–27 (1984).

    Article  Google Scholar 

  5. Munk, W. H. Deep-Sea Res. 13, 707–730 (1966).

    Google Scholar 

  6. Armi, L. J. geophys. Res. 83, 1971–1979 (1978).

    Article  ADS  Google Scholar 

  7. Eriksen, C. C. J. phys. Oceanogr. 15, 1145–1156 (1985).

    Article  ADS  Google Scholar 

  8. Bell, T. H. J. geophys. Res. 80, 320–327 (1975).

    Article  ADS  Google Scholar 

  9. Toole, J. M., Polzin, K. L. & Schmitt, R. W. Science 264, 1120–1123 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Kunze, E. & Sanford, T. M. J. phys. Oceanogr. (submitted).

  11. Schmitt, R. W., Toole, J. M., Koehler, R. L., Doherty, K. & Mellinger, E. J. Atmos. Oceanic Technol. 5, 484–500 (1988).

    Article  ADS  Google Scholar 

  12. Monti, S. & Mercier, H. Bathymetric Map of the Romanche Fracture Zone (IFREMER, Brest, France, 1991).

    Google Scholar 

  13. Bryden, H. L. & Stommel, H. M. Oceanologica Acta 7, 289–296 (1984).

    Google Scholar 

  14. Miles, J. W. & Howard, L. N. J. Fluid Mech. 10, 496–512 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  15. Thorpe, S. A. J. Fluid Mech. 61, 731–751 (1973).

    Article  ADS  Google Scholar 

  16. Armi, L. J. Fluid Mech. 163, 27–58 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  17. Long, R. R. Bull. Am. met. Soc. 34, 205–211 (1953).

    Article  Google Scholar 

  18. Tennekes, H. & Lumley, J. L. A First Course in Turbulence (MIT Press, Cambridge, 1972).

    MATH  Google Scholar 

  19. Osborn, T. R. J. phys. Oceanogr. 10, 83–89 (1980).

    Article  ADS  Google Scholar 

  20. McCartney, M. S. & Curry, R. A. J. phys. Oceanogr. 23, 1264–1276 (1993).

    Article  ADS  Google Scholar 

  21. Warren, B. A. & Speer, K. G. Deep-Sea Res. (suppl.) 38, s281–s322 (1991).

    Article  ADS  Google Scholar 

  22. Schlitzer, R. J. geophys. Res. 92, 2953–2969 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Whitehead, J. A. & Worthington, L. V. J. geophys. Res. 87, 7903–7924 (1982).

    Article  ADS  Google Scholar 

  24. Hogg, N., Biscaye, P., Grdner, W. & Schmitz, W. J. mar. Res. (suppl.) 40, 231–263 (1982).

    Google Scholar 

  25. Saunders, P. M. J. phys. Oceanogr. 17, 631–643 (1987).

    Article  ADS  Google Scholar 

  26. Barton, E. D. & Hill, A. E. Deep-Sea Res. 36, 1121–11226 (1989).

    Article  ADS  Google Scholar 

  27. Roemmich, D., Hautala, S. & Rudnick, D. J. geophys. Res. (in the press).

  28. Wessen, J. C. & Gregg, M. C. J. geophys. Res. 99, 9847–9878 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polzin, K., Speer, K., Toole, J. et al. Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature 380, 54–57 (1996). https://doi.org/10.1038/380054a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380054a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing