Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Melting dynamics of a plasma crystal

Abstract

PLASMAS have long been regarded as the most disordered state of matter; nevertheless, a set of colloidal particles introduced into a charge-neutral plasma can spontaneously exhibit ordered crystalline structures1,2—so-called 'plasma crystals'. Such systems, which reach equilibrium very rapidly and can be easily tuned between their ordered and disordered states, are ideally suited for investigating the processes underlying the solid-to-liquid phase transition. Here we report the results of experiments on 'flat' plasma crystals (with thicknesses of only a few lattice planes) which suggest that the melting transition occurs through two fundamental intermediate stages. On melting, the crystal first enters a state characterized by islands of crystalline order, about which streams of particles flow. The crystalline regions then dissolve as the vibrational energy of the system increases, but this is accompanied by a temporary increase in orientational order before the system finally enters a disordered, liquid state. The unexpected 'vibrational' phase, characterized by enhanced orientational order, might arise as a consequence of the mixed two- and three-dimensional nature of the flat plasma crystals. Alternatively, it may indicate the existence of a new intermediate state in melting transitions more generally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thomas, H. et al. Phys. Rev. Lett. 73, 652–655 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Chu, J. & Lin, I. Phys. Rev. Lett. 72, 4009–4012 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Melzer, A., Homann, A. & Piel, A. Phys. Rev. E (submitted).

  4. Ikezi, H. Phys. Fluids 29, 1764–1766 (1986).

    Article  ADS  Google Scholar 

  5. Farouki, R. & Appl. Phys. Lett. 61, 2973–2975 (1992).

    Article  ADS  Google Scholar 

  6. Wigner, E. Phys. Rev. 46, 1002–1011 (1934).

    Article  ADS  CAS  Google Scholar 

  7. Diedrich, F., Peik, E., Chen, J., Quint, W. & Walther, H. Phys. Rev. Lett. 59, 2931–2934 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Gilbert, S., Bollinger, J. & Wineland, D. Phys. Rev. Lett. 60, 2022–2025 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Waki, I., Kassner, S., Birkl, G. & Walther, H. Phys. Rev. Lett. 68, 2007–2010 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Jiang, H. et al. Phys. Rev. Lett. 65, 633–636 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Goldman, V., Santos, M., Shayegan, M. & Cunningham, J. Phys. Rev. Lett. 65, 2189–2192 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Kose, A., Ozaki, M., Takano, K. & Kobayashi, Y. & Hachisu, S. J. Colloid Interf. Sci. 44, 330–338 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Murray, C. Bond Orientational Order in Condensed Matter Systems (ed. Strandburg, K.) Ch. 4 (Springer, New York, 1992).

    Google Scholar 

  14. Grier, D. & Murray, C. J. chem. Phys. 100, 9088–9095 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Maddox, J. Nature 370, 411 (1994).

    Article  ADS  Google Scholar 

  16. Morfill, G. E. & Thomas, H. M. J. Vac. Sci. Technol. A (in the press).

  17. Morfill, G. E. et al. Colombus Precursor Flights Proposal (MPE preprint, 1991).

    Google Scholar 

  18. Murray, C. & Wenk, R. Phys. Rev. Lett. 58, 1643–1646 (1989).

    Article  ADS  Google Scholar 

  19. Hurley, M. & Harrowell, P. Phys. Rev. E52, 1694–1698 (1995).

    ADS  CAS  Google Scholar 

  20. Löwen, H. J. Phys.: Condens. Matter 4, 10105–10116 (1992).

    ADS  Google Scholar 

  21. Kosterlitz, J. & Thouless, D. J. Phys. C6, 1181–1203 (1973).

    ADS  CAS  Google Scholar 

  22. Halperin, B. & Nelson, D. Phys. Rev. Lett. 41, 121–124 (1978).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Nelson, D. & Halperin, B. Phys. Rev. B19, 2457–2484 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Young, A. Phys. Rev. B19, 1855–1857 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Nelson, D. in Phase Transitions and Critical Phenomena Vol. 7 (eds Domb, C. & Leibowitz, J.) (Academic, London, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, H., Morfill, G. Melting dynamics of a plasma crystal. Nature 379, 806–809 (1996). https://doi.org/10.1038/379806a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379806a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing