Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microscopic origins of superfluidity in confined geometries

Abstract

LIQUID helium provides a convenient model system in which to study the effects of disorder on strongly interacting media such as superfluids1,2 and superconductors3. Confinement of liquid helium in porous glasses profoundly affects its behaviour, even to the extent of changing the universality class of the normal-to-superfluid phase transition1,4,5. Although the effects of disorder on macroscopic fluid properties (such as the superfluid fraction) have been studied extensively6–11, the microscopic processes underlying these effects have received much less attention. For example, little is known theoretically12 or experimentally13,14about the effects of disorder on the spectrum of elementary superfluid excitations, which reflects the dynamics of the system on a microscopic scale. Here we report inelastic neutron scattering measurements of the collective excitation spectrum for 4He confined in porous aerogel glass. Near the superfluid transition temperature, the behaviour of the superfluid phase is governed by rotons (elementary excitations that are often compared to microscopic vortex rings), which we find to exhibit an increased effective mass and a decreased lifetime in the disordered system, relative to the unconfined supefluid. No theoretical predictions for these changes exist, and their origin is unclear; nevertheless, the disorder-induced changes in the microscopic collective excitation spectrum account fully for the observed changes in macroscopic fluid behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chan, M. H. W., Blum, K. I., Murphy, S. Q., Wong, G. K. S. & Reppy, J. D. Phys. Rev. Lett. 61, 1950–1953 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Berthold, J. E., Bishop, D. J. & Reppy, J. D. Phys. Rev. Lett. 39, 348–351 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Tyler, A., Cho, H. A. & Reppy, J. D. Phys. Rev. Lett. 73, 987–990 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Wong, G. K. S., Crowell, P. A., Cho, H. A. & Reppy, J. D. Phys. Rev. Lett. 65, 2410–2413 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Wong, G. K. S., Crowell, P. A., Cho, H. A. & Reppy, J. D. Phys. Rev. B48, 3858–3880 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Crowell, P. A. et al. Phys. Rev. B51, 12721–12736 (1995).

    Article  CAS  Google Scholar 

  7. Harris, A. B. J. Phys. C7, 1671–1674 (1974).

    ADS  Google Scholar 

  8. Weinreb, A. & Halperin, B. I. Phys. Rev. B27, 413–427 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  9. Narayan, O. & Fisher, D. S. Phys. Rev. B42, 7869–7875 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Hohenberg, P. C., Aharony, A., Halperin, B. I. & Siggia, E. D. Phys. Rev. B13, 2986–2996 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Stauffer, D., Ferer, M. & Wortis, M. Phys. Rev. Lett. 29, 345–348 (1972).

    Article  ADS  CAS  Google Scholar 

  12. Makivic, M., Trivedi, N. & Ullah, S. Phys. Rev. Lett. 71, 2307–2310 (1993).

    Article  ADS  CAS  Google Scholar 

  13. De Kinder, J., Coddens, G. & Millet, R. Z. Phys. B95, 511–514 (1994).

    Article  CAS  Google Scholar 

  14. Snow, W. M. & Sokol, Pi. E. J. Low Temp. Phys. 80, 197–220 (1990).

    Article  ADS  CAS  Google Scholar 

  15. McKenna, M. J., Slawecki, T. & Maynard, J. D. Phys. Rev. Lett. 66, 1878–1881 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Aerogels: Proceedings of the First International Symposium (Springer-Verlag, Berlin, 1986).

  17. Gibbs, M. R., Sokol, P. E., Azuah, R. T., Stirling, W. G. & Adams, M. A. Physica B213&214, 462–464 (1995).

    Article  CAS  Google Scholar 

  18. Price, D. L. & Skold, K. in Methods of Experimental Physics (eds Skold, K. & Price, D. L.) 1(Academic, New York, 1986).

    Google Scholar 

  19. Osborn, R., Ecclestone, R. S., Bennington, S. M. & Kitchener, B. G. B. Report RAL-94-102 (Rutherford Appleton Lab., Chilton, 1995).

  20. Stirling, W. G. & Glyde, H. R. Phys. Rev. B41, 4224–4242 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Wilks, J. & Betts, D. S. An Introduction to Liquid Helium (Clarendon, Oxford, 1987).

    Google Scholar 

  22. Brooks, J. S. & Donnelly, R. J. J. Phys. Chem. Ref. Data 6, 51–104 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Tilley, D. R. & Tilley, J. Superfluidity and Superconductivity (Institute of Physics Publishing,Bristol, 1990).

    Google Scholar 

  24. Maynard, J. D. Phys. Rev. B14, 3868–3891 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Andersen, K. H. & Stirling, W. G. J. Phys.: Condens. Matter 6, 5805–5822 (1994).

    ADS  CAS  Google Scholar 

  26. Awschalom, D. D. & Schwarz, K. W. Phys. Rev. Lett. 52, 49–52 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Reatto, L., Vitiello, S. A. & Masserini, G. L. J. Low Temp. Phys. 93, 879–892 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokol, P., Gibbs, M., Stirling, W. et al. Microscopic origins of superfluidity in confined geometries. Nature 379, 616–618 (1996). https://doi.org/10.1038/379616a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379616a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing