Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamical weakening of faults by acoustic fluidization

Abstract

When a fault slips seismically, some of the energy released may excite strong, short-wavelength vibrations near the fault core. Such vibrations can temporarily reduce the normal stress on the fault, allowing it to slip at lower shear stresses than predicted by laboratory coefficients of friction. This phenomenon of 'acoustic fluidization' provides an alternative to theories that invoke pressurized fluids as an explanation for why some faults appear to be so weak.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Henyey, T. L. & Wasserburg, G. J. J. geophys. Res. 76, 7924–7945 (1971).

    Article  ADS  Google Scholar 

  2. Brune, J. N., Henyey, T. L. & Roy, R. F. J. geophys. Res. 74, 3821–3827 (1969).

    Article  ADS  Google Scholar 

  3. Lachenbruch, A. H. & Sass, J. H. J. geophys. Res. 97, 4995–5015 (1992).

    Article  ADS  Google Scholar 

  4. Lachenbruch, A. H. & Sass, J. H. J. geophys. Res. 85, 6185–6222 (1980).

    Article  ADS  Google Scholar 

  5. Zoback, M. D. & Healy, J. H. J. geophys. Res. 97, 5039–5057 (1992).

    Article  ADS  Google Scholar 

  6. Zoback, M. D. & Roller, J. C. Science 206, 445–447 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Mount, V. S. & Suppe, J. Geology 15, 1143–1146 (1987).

    Article  ADS  Google Scholar 

  8. Zoback, M. D. et al. Science 238, 1105–1111 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Hickman, S. H. Rev. Geophys. (suppl.) 759–775 (1991).

  10. Sibson, R. H. Pure appl. Geophys. 142, 645–662 (1994).

    Article  ADS  Google Scholar 

  11. Sleep, N. H. & Blanpied, M. L. Nature 359, 687–692 (1992).

    Article  ADS  Google Scholar 

  12. Byerlee, J. Geology 21, 303–306 (1993).

    Article  ADS  Google Scholar 

  13. Rice, J. R. in Fault Mechanics and Transport Properties in Rocks (eds Evans, B. & Wong, T.-F.) 475–503 (Academic, San Diego, 1992).

    Google Scholar 

  14. Lockner, D. A. & Byerlee, J. D. Geopnys. Res. Lett. 21, 2353–2356 (1994).

    Article  ADS  Google Scholar 

  15. Melosh, H. J. J. geophys. Res. 84, 7513–7520 (1979).

    Article  ADS  Google Scholar 

  16. Brune, J. N., Brown, S. & Johnson, P. A. Tectonophysics 218, 59–67 (1993).

    Article  ADS  Google Scholar 

  17. Oden, J. T. & Martins, J. A. C. Comp. Meth. appl. Mech. Engng. 52, 527–634 (1985).

    Article  Google Scholar 

  18. Heaton, T. H. Phys. Earth planet. Inter. 64, 1–20 (1990).

    Article  ADS  Google Scholar 

  19. Foda, M. A. Proc. R. Soc. Lond. A435, 233–244 (1991).

    Article  ADS  Google Scholar 

  20. Chester, F. M., Evans, J. P. & Biegel, R. L. J. geophys. Res. 98, 771–786 (1993).

    Article  ADS  Google Scholar 

  21. Byerlee, J. Pure appl. Geophys. 116, 615–626 (1978).

    Article  ADS  Google Scholar 

  22. Crandall, S. H. & Mark, W. D. Random Vibration in Mechanical Systems (Academic, New York, 1973).

    Google Scholar 

  23. Rodger, A. A. & Littlejohn, G. S. Géotechnique 30, 269–293 (1980).

    Article  Google Scholar 

  24. Richards, R., Elms, D. G. & Budhu, M. J. Geotech. Engng. 116, 740–759 (1990).

    Article  Google Scholar 

  25. Barkan, D. D. Dynamics of Bases and Foundations (McGraw-Hill, New York, 1962).

    Google Scholar 

  26. Zik, O., Stavans, J. & Rabin, Y. Europhys. Lett. 17, 315–319 (1992).

    Article  ADS  Google Scholar 

  27. Blekhman, I. I. in Advances in Theoretical and Applied Mechanics (eds Ishlinsky, A. & Chernousko, F.) 127–147 (MIR, Moscow, 1981).

    Google Scholar 

  28. Kanamori, H. A. Rev. Earth planet. Sci. 22, 207–237 (1994).

    Article  ADS  Google Scholar 

  29. Dainty, A. M., Toksöz, M. N., Anderson, K. R. & Pines, P. S. The Moon 2, 11–29 (1974).

    Article  ADS  Google Scholar 

  30. Dainty, A. M. & Toksöz, M. N. J. Geophys 43, 375–388 (1977).

    Google Scholar 

  31. Nakamura, Y. J. Geophys. 43, 389–399 (1977).

    Google Scholar 

  32. Frankel, A. & Wennerberg, L. Bull. seism. Soc. Am. 77, 1223–1251 (1987).

    Google Scholar 

  33. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes; The Art of Scientific Computing (Cambridge Univ. Press, 1986).

    MATH  Google Scholar 

  34. Bergé, P., Pomeau, Y. & Vidal, C. Order within Chaos (Wiley, New York, 1984).

    MATH  Google Scholar 

  35. Anderson, D. L. Theory of the Earth (Blackwell, Boston, 1989).

    Google Scholar 

  36. Dainty, A. M. Geophys. Res. Lett. 8, 1126–1128 (1981).

    Article  ADS  Google Scholar 

  37. Brune, J. N. J. geophys. Res. 75, 4997–5009 (1970).

    Article  ADS  Google Scholar 

  38. Engelder, J. T. Geol. Soc. Am. Bull. 85, 1515–1522 (1974).

    Article  ADS  Google Scholar 

  39. Melosh, H. J. & Ebel, J. Geophys. J. R. astr. Soc. 59, 419–436 (1979).

    Article  ADS  Google Scholar 

  40. Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 1990).

    Google Scholar 

  41. Wesson, R. L. J. geophys. Res. 93, 8929–8951 (1988).

    Article  ADS  Google Scholar 

  42. Beroza, G. C. & Jordan, T. H. J. geophys. Res. 95, 2485–2510 (1990).

    Article  ADS  Google Scholar 

  43. Sibson, R. H. Pure appl. Geophys. 124, 159–175 (1986).

    Article  ADS  Google Scholar 

  44. Goodman, R. A., Taylor, R. L. & Brekke, T. L. J. Soil Mech. Fdns Div. Am. Soc. civ. Engrs 94, 637–659 (1968).

    Google Scholar 

  45. Jaeger, J. C. Géotechnique 21, 97–134 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melosh, H. Dynamical weakening of faults by acoustic fluidization. Nature 379, 601–606 (1996). https://doi.org/10.1038/379601a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379601a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing