Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cationic cyclopropanation by antibody catalysis

Abstract

REACTIONS involving highly reactive carbocations play a central role in many important chemical processes, such as cyclization reactions1,2. However, the potential for controlling the pathways of such reactions to obtain energetically disfavoured (but desirable) products has been hard to realize because of the difficulties inherent in controlling the conformation and chemical environment of the carbocation intermediates. Antibody catalysts, with their high specificity and binding energies, can provide the degree of conformational and chemical control necessary for directing such reactions3,4. Here we show how antibody catalysis can guide cationic cyclization reactions selectively to form products (in high yield) that would otherwise be highly disfavoured. Most notable is the formation of a strained bicyclic compound containing a rare cyclopropane group. To explain our results, we propose a common reaction scheme in which the key step is the formation of a highly reactive protonated cyclopropane intermediate; subtle structural modifications to the substrate (the compound on which the catalytic antibody acts) lead to dramatic differences in the structure of the final product.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Olah, G. A. & Schleyer, P. Carbonium Ions (Wiley Interscience, New York, 1970).

    Google Scholar 

  2. Johnson, W. S. Acc. Chem. Res. 1, 1–8 (1968).

    Article  Google Scholar 

  3. Janda, K. D., Shevlin, C. G. & Lerner, R. A. Science 259, 490–493 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Li, T., Janda, K. D., Ashley, J. A. & Lerner, R. A. Science 264, 1289–1293 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Saunders, M., Vogel, P., Hagen, E. L. & Rosenfeld, J. Acc. Chem. Res. 6, 53–59 (1973).

    Article  CAS  Google Scholar 

  6. Lee, C. C. Prog. phys. org. Chem. 7, 129–187 (1970).

    Google Scholar 

  7. Collins, C. J. Chem. Rev. 69, 543–550 (1969).

    Article  CAS  Google Scholar 

  8. Brown, H. C. Pure appl. Chem. 54, 1783–1796 (1982).

    Article  CAS  Google Scholar 

  9. Olah, G. A. Angew. Chem. int. Edn engl. 34, 1393–1405 (1995).

    Article  CAS  Google Scholar 

  10. Guilford, W. J. & Coates, R. M. J. Am. chem. Soc. 104, 3506–3508 (1982).

    Article  CAS  Google Scholar 

  11. Djerassi, C. & Doss, G. A. New J. Chem. 14, 713–719 (1990).

    CAS  Google Scholar 

  12. Ruzicka, L., Ruegg, R., Volli, E. & Jegar, O. Helv. chim. Acta. 30, 140–148 (1947).

    Article  CAS  Google Scholar 

  13. Beaton, J. M., Easton, J. D., Macarthur, M. M., Spring, F. S. & Stevenson, R. J. chem. Soc., 3992–3997 (1955).

    Article  CAS  Google Scholar 

  14. Skell, P. S. & Starer, I. J. Am. chem. Soc. 82, 2971 (1960).

    Article  CAS  Google Scholar 

  15. Silver, M. S. J. Am. chem. Soc. 82, 2971–2972 (1960).

    Article  CAS  Google Scholar 

  16. Bayless, J. H. & Friedman, L. J. Am. chem. Soc. 89, 147–148 (1967).

    Article  CAS  Google Scholar 

  17. Li, T., Hilton, S. & Janda, K. D. J. Am. chem. Soc. 117, 3308–3309 (1995).

    Article  CAS  Google Scholar 

  18. Janda, K. D. Biotechnol. Prog. 6, 178–181 (1990).

    Article  CAS  Google Scholar 

  19. Fleming, I., Pearce, A. & Snowden, R. L. J. chem. Soc., chem. Commun. 5, 182–183 (1976).

    Article  Google Scholar 

  20. Lewinsohn, E., Gijzen, M. & Croteau, R. Archs Biochem. Biophys. 293, 167–173 (1992).

    Article  CAS  Google Scholar 

  21. Abe, I., Rohmer, M. & Prestwich, G. D. Chem. Rev. 94, 2189–2206 (1993).

    Article  Google Scholar 

  22. Altman, L. J., Kowerski, R. C. & Laungani, D. R. J. Am. chem. SOC. 100, 6174–6182 (1978).

    Article  CAS  Google Scholar 

  23. LoGrasso, P. V., Soltis, D. A. & Boettcher, B. R. Archs Biochem. Biophys. 307, 193–199 (1993).

    Article  CAS  Google Scholar 

  24. Schroepfer, G. J. A. Rev. Biochem. 51, 555–585 (1982).

    Article  CAS  Google Scholar 

  25. March, J. Advanced Organic Chemistry 673–674 (Wiley-lnterscience, New York, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ll, T., Janda, K. & Lerner, R. Cationic cyclopropanation by antibody catalysis. Nature 379, 326–327 (1996). https://doi.org/10.1038/379326a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379326a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing