Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiple equilibria in metapopulation dynamics

Abstract

THE worldwide loss and fragmentation of natural habitats1has led to considerable theory on metapopulation dynamics2á¤-8. One modelling approach, using structured population models9,10, predicts that metapopulations in which local dynamics are affected by migration may have alternative stable equilibria11á¤-17. We have tested this prediction with extensive data on the butterfly Melitaea cinxia18,19. Here we show that the probability of local extinction decreases with increasing population size and increasing immigration rate, and that local populations tend to be larger in regions with higher density of extant populations19, results consistent with model assumptions and predictions13,17. Our results exhibit a bifurcation pattern indicating multiple equilibria14, with a strikingly bimodal distribution of the fraction of occupied habitat in 65 semi-independent patch networks. These results help to explain observations of species occupying either most, or very little, of the suitable habitat in well-connected patch networks14,20,21. Metapopulations with multiple equilibria may collapse unexpectedly to extinction even in landscapes degrading only slowly. Multiple equilibria make it difficult to predict the occurrence of species in fragmented landscapes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morris, D. W. Nature 373, 25 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Gilpin, M. & Hanski. I. (eds) Metapopulation Dynamics: Empirical and Theoretical Investigations (Academic, London, 1991).

  3. Hastings, A. & Higgins, K. Science 263, 1133–1136 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Tilman, D. et al. Nature 371, 65–66 (1994).

    Article  ADS  Google Scholar 

  5. Hassell, M. P., Comins, H. N. & May, R. M. Nature 370, 290–292 (1994).

    Article  ADS  Google Scholar 

  6. Durrett, R. & Levin, S. A. Phil. Trans. R. Soc. Lond. B 343, 329–350 (1994).

    Article  Google Scholar 

  7. May, R. M. in Large-scale Ecology and Conservation Biology (eds Edwards, P. J., May, R. M. & Webb, N. R.) 1–18 (Blackwell Scientific, Oxford, 1994).

    Google Scholar 

  8. Kareiva, P. & Wennergren, U. Nature 373, 299–302 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Metz, J. A. J. & Diekmann, O. (eds) The Dynamics of Physiologically Structured Populations (Springer, Berlin, 1986).

  10. Ebenman, B. & Persson, L. (eds) Size-structured Populations (Wadsworth, Belmont, CA, 1988).

    MATH  Google Scholar 

  11. Hastings, A. & Wolin, C. L. Ecology 70, 1261–1266 (1989).

    Article  Google Scholar 

  12. Hastings, A. in Metapoputation Dynamics: Empirical and Theoretical Investigations (eds Gilpin, M. & Hanski, I.) 57–71 (Academic, London, 1991).

    Book  Google Scholar 

  13. Gyllenberg, M. & Hanski, I. Theor. Populat. Biol. 42, 35–61 (1992).

    Article  Google Scholar 

  14. Hanski, I. & Gyllenberg, M. Am. Nat. 142, 17–41 (1993).

    Article  Google Scholar 

  15. Hastings, A. & Harrison, S. A. Rev. Ecol. Syst. 25, 167–188 (1994).

    Article  Google Scholar 

  16. Hanski, I. Ecology 66, 335–343 (1985).

    Article  Google Scholar 

  17. Hanski, I. & Zhang, D.-Y. J. Theor. Biol. 163, 491–504 (1993).

    Article  Google Scholar 

  18. Hanski, I., Kuussaari, M. & Nieminen, M. Ecology 75, 747–762 (1994).

    Article  Google Scholar 

  19. Hanski, I. et al. Oikos 72, 21–28 (1995).

    Article  Google Scholar 

  20. Hanski, I. Oikos 38, 210–221 (1982).

    Article  Google Scholar 

  21. Thomas, C. D. in Individuals, Populations and Patterns In Ecology (eds Leather, S., Watt, A. & Mills, N.) (Blackwell, Oxford) (in the press).

  22. Diamond, J. M. in Extinctions (ed. Nitecki, M. H.) 191–246 (Univ. Chicago Press, 1984).

    Google Scholar 

  23. Schoener, T. E. & Spiller, D. A. Nature 330, 474–477 (1987).

    Article  ADS  Google Scholar 

  24. Brown, J. H. & Kodric-Brown, A. Ecology 58, 445–449 (1977).

    Article  Google Scholar 

  25. Whitlock, M. Am. Nat. 139, 952–970 (1992).

    Article  Google Scholar 

  26. Sjögren Gulve, P. Ecology 75, 1357–1367 (1994).

    Article  Google Scholar 

  27. Gotelli, N. J. & Simberloff, D. Am. Nat. 130, 18–35 (1987).

    Article  Google Scholar 

  28. Pullin, A. S. (ed.) Ecology and Conservation of Butterflies (Chapman & Hall, London, 1995).

    Google Scholar 

  29. New, T. R. et al. A. Rev. Ent. 40, 57–83 (1995).

    Article  CAS  Google Scholar 

  30. Hanski, I. et al. Conserv. Biol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanski, I., Pöyry, J., Pakkala, T. et al. Multiple equilibria in metapopulation dynamics. Nature 377, 618–621 (1995). https://doi.org/10.1038/377618a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377618a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing