Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visualization of fast energy flow and solvent caging in unimolecular dynamics

Abstract

ENERGY flow in solution between physically or chemically evolving solute molecules and the surrounding solvent significantly affects the nature of chemical dynamics in liquids. It determines the extent to which the statistical theory of reaction rates1,2 is valid; the transfer of energy between solute and solvent influences the ease with which the transition state evolves into the products—the process central to transition-state theory. But analysing the energy flow in liquid-phase dynamics is difficult because these systems are so complex, and the degrees of freedom are consequently so numerous. Here we present a way to address this challenge. We introduce an approach for visualizing the energy flow directly, and apply it to the isomerization of cyclohexane (between boat and chair conformations) in liquid carbon disulphide, a process for which detailed information about the molecular motions is available from molecular dynamics simulations8. Our method reveals in pictorial form the formation and relaxation of a solvent cage, and shows that the relaxation has a strong effect on energy flow to and from the transition state on sub-picosecond timescales. We anticipate that this visualization approach will be generally useful for elucidating dynamical molecular processes in solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wigner, E. Trans. Faraday Soc. 34, 29–41 (1938).

    Article  CAS  Google Scholar 

  2. Johnston, H. S. Gas Phase Reaction Rate Theory (Ronald, New York, 1966).

    Google Scholar 

  3. Jimenez, R., Fleming, G. R., Kumar, P. V. & Maroncelli, M. Nature 369, 471–473 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Chandler, D., Weeks, J. D. & Andersen, H. C. Science 220, 787–794 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Hasha, D. L., Eguchi, T. & Jonas, J. J. chem. Phys. 75, 1571–1573 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Hasha, D. L., Eguchi, T. & Jonas, J. J. Am. chem. Soc. 104, 2290–2296 (1982).

    Article  CAS  Google Scholar 

  7. Campbell, D. M., Mackowiak, M. & Jonas, J. J. chem. Phys. 96, 2717–2723 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Wilson, M. A. & Chandler, D. Chem. Phys. 149, 11–20 (1990).

    Article  CAS  Google Scholar 

  9. Singer, S. J., Kuharski, R. A. & Chandler, D. J. phys. Chem. 90, 6015–6017 (1986).

    Article  CAS  Google Scholar 

  10. Borkovec, M., Straub, J. E. & Berne, B. J. J. chem. Phys. 85, 146–149 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Chandler, D. & Kuharski, R. A. Discuss. Faraday Soc. 85, 329–340 (1988).

    Article  CAS  Google Scholar 

  12. Rejto, P. A. & Chandler, D. J. phys. Chem. 98, 12310–12314 (1994).

    Article  CAS  Google Scholar 

  13. Gertner, B. J., Whitnell, R. M., Wilson, K. R. & Hynes, J. T. J. Am. chem. Soc. 113, 74–87 (1991).

    Article  CAS  Google Scholar 

  14. Pickett, H. M. & Strauss, H. L. J. Am. chem. Soc. 92, 7281–7290 (1970).

    Article  Google Scholar 

  15. Strauss, H. L. J. chem. Educ. 48, 221–223 (1971).

    Article  CAS  Google Scholar 

  16. Keck, J. C. Adv. chem. Phys. 13, 85–121 (1967).

    Google Scholar 

  17. Anderson, J. B. J. chem. Phys. 58, 4684–4692 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Bennett, C. H. in Algorithms for Chemical Computation (ed. Christofferson, R. E.) 63–97 (ACS Symp. Ser. No. 46, American Chemical Society, Washington DC, 1977).

    Book  Google Scholar 

  19. Chandler, D. J. chem. Phys. 68, 2959–2970 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Miller, W. H. Acc. chem. Res. 9, 306–312 (1976).

    Article  CAS  Google Scholar 

  21. Hänggi, P., Talkner, P. & Borkovec, M. Rev. mod. Phys. 62, 251–341 (1990).

    Article  ADS  Google Scholar 

  22. Patron, F. & Adelman, S. A. Chem. Phys. 152, 121–131 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rejto, P., Bindewald, E. & Chandler, D. Visualization of fast energy flow and solvent caging in unimolecular dynamics. Nature 375, 129–131 (1995). https://doi.org/10.1038/375129a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375129a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing