Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneous assembly of a hinged coordination network

Abstract

THE field of supramolecular chemistry has advanced to a stage at which it is possible to select building blocks that will self-assemble into structures with specific network topologies1–3. This makes possible the rational design and synthesis of molecular solids with potentially interesting properties. Here we report the construction of open, hinged networks from molecular building blocks. This class of materials has been predicted to exhibit unusual mechanical properties, including auxetic behaviour (negative Poisson's ratio) and negative coefficients of thermal expansion4–6. Our approach relies on the notion that rigid organic molecules of high symmetry will adopt one of only a few possible structures when linked via hydrogen bonds or coordination to metals7–9. We use trigonal lig-ands to make networks joined at the vertices by metal ions; the resulting networks are homeotypic10 with the honeycomb-like A1B2 and the hinge-like ThSi2 phases. The hinge-like network has channels of inner diameter 15 Å, within which included molecules can be exchanged while the framework remains intact. We have not yet determined whether this material is auxetic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Desiraju, G. R. Crystal Engineering: the Design of Organic Solids (Elsevier, New York, 1989).

    Google Scholar 

  2. MacDonald, J. W. & Whitesides, G. M. Chem. Rev. 94, 2383–2420 (1994).

    Article  CAS  Google Scholar 

  3. Lehn, J. M. Pure appl. Chem. 66, 1961–1966 (1994).

    Article  CAS  Google Scholar 

  4. Baughman, R. H. & Galvāo, D. S. Nature 365, 735–737 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Evans, K. E. & Hutchinson, I. J. Nature 353, 124 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Lakes, R. Adv. Mater. 5, 293–296 (1993).

    Article  CAS  Google Scholar 

  7. Moore, J. S. & Lee, S. Chem. Ind. 556–560 (1994).

  8. Zaworotko, M. J. Chem. Soc. Rev. 23, 283–288 (1994).

    Article  CAS  Google Scholar 

  9. Robson, R. et al. Supramolecular Architecture (ed. Bein, T.) Ch. 19 (ACS Symp. Ser. 499, American Chemical Soc., Washington DC., 1992).

    Google Scholar 

  10. Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. Acta Crystallogr. A46, 1–11 (1990).

    Article  Google Scholar 

  11. Diederich, F. & Rubin, R. Angew. Chem. int. Edn engl. 31, 1101–1123 (1992).

    Article  Google Scholar 

  12. Hoffmann, R., Hughbanks, T., Kertész, M. & Bird, P. H. J. Am. chem. Soc. 105, 4831–4832 (1983).

    Article  CAS  Google Scholar 

  13. Zheng, C. & Hoffmann, R. Inorg. Chem. 28, 1074–1080 (1989).

    Article  CAS  Google Scholar 

  14. Wu, Z., Lee, S. & Moore, J. S. J. Am. chem. Soc. 114, 8730–8732 (1992).

    Article  CAS  Google Scholar 

  15. Hoskins, B. F., Robson, R. & Scarlett, N. V. Y. J. chem. Soc., chem. Commun. 2025–2026 (1994).

  16. Abrahams, B. F., Hoskins, B. F., Michail, D. M. & Robson, R. Nature 369, 727–729 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Kaszynski, P., Friedli, A. C. & Michl, J. J. Am. chem. Soc. 114, 601–620 (1992).

    Article  CAS  Google Scholar 

  18. Simard, M., Su, D. & Wuest, J. D. J. Am. chem. Soc. 113, 4696–4698 (1991).

    Article  CAS  Google Scholar 

  19. Fagan, P. J., Ward, M. D. & Calabrese, J. C. J. Am. chem. Soc. 111, 1698–1719 (1989).

    Article  CAS  Google Scholar 

  20. Klepp, K. & Parthé, E. Acta Crystallogr. B38, 1105–1108 (1982).

    Article  Google Scholar 

  21. Mewis, A. Z. Naturforsch. 33B, 983–986 (1976).

    Google Scholar 

  22. Bailey, A. S., Henn, B. R. & Langdon, J. M. Tetrahedron 19, 161–167 (1963).

    Article  CAS  Google Scholar 

  23. Zhang, J., Pesak, D. J., Ludwick, J. L. & Moore, J. S. J. Am. chem. Soc. 116, 4227–4239 (1994).

    Article  CAS  Google Scholar 

  24. Wang, X., Simard, M. & Wuest, J. D. J. Am. chem. Soc. 116, 12119–12120 (1994).

    Article  CAS  Google Scholar 

  25. Duchamp, D. J. & Marsh, R. E. Acta Crystallogr. B25, 5–19 (1969).

    Article  CAS  Google Scholar 

  26. Ermer, O. & Lindenberg, L. Helv. chim. Acta. 74, 825–877 (1991).

    Article  CAS  Google Scholar 

  27. Ermer, O. J. Am. chem. Soc. 110, 3747–3754 (1988).

    Article  CAS  Google Scholar 

  28. Gavezzotti, A. & Desiraju, G. R. Acta Crystallogr. B44, 427–434 (1988).

    Article  Google Scholar 

  29. Sheldrick, G. M. Crystal Solution Program (inst. fūr Anorg. Chemie, Gottingen, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, G., Venkataraman, D., Moore, J. et al. Spontaneous assembly of a hinged coordination network. Nature 374, 792–795 (1995). https://doi.org/10.1038/374792a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374792a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing