Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular redox switches based on chemical triggering of iron translocation in triple-stranded helical complexes

Abstract

THEgrowing interest in miniaturization of electronic components is stimulating research on molecular assemblies with device-like functionalities1–5. Molecule-based devices have been reported that might act as sensors6–8, diodes9–11, logic gates12 and switches5,13–19. Molecular switches should ideally be able to respond controllably and reversibly to external triggers7,12,14,15,20,21. Here we report the synthesis of molecular redox switches based on helical metal complexes22–29 in which an iron ion can occupy one of two distinct binding cavities. Reversible translocation of the metal ion between these sites is achieved by chemical oxidation and reduction, owing to the different coordination preferences of the Fe(ii) and Fe(ni) states, and can be readily monitored spectroscopically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carter, F. L. Molecular Electronic Devices II (Dekker, New York, 1987).

    Google Scholar 

  2. Hopfield, J. J., Onuchic, J. N. & Beratan, D. N. J. phys. Chem. 93, 6350–6357 (1989).

    Article  CAS  Google Scholar 

  3. Lehn, J. M. Angew. Chem. int. Edn engl. 29, 1304–1319 (1990).

    Article  Google Scholar 

  4. Wild, U. P., Bernet, S., Kohler, B. & Renn, A. Pure appl. Chem. 64, 1335–1342 (1992).

    Article  CAS  Google Scholar 

  5. Anders, J. et al. Ber. Bunsenges. phys. Chem. 97, 483–487 (1993).

    Article  CAS  Google Scholar 

  6. Rubinstein, I., Steinberg, S., Tor, Y., Shanzer, A. & Sagiv, J. Nature 332, 426–429 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Huston, M. E., Akkaya, E. U. & Czarnik, A. W. J. Am. chem. Soc. 111, 8735–8737 (1989).

    Article  CAS  Google Scholar 

  8. Bissell, R. A. et al. Chem. Soc. Rev. 21, 187–195 (1992).

    Article  CAS  Google Scholar 

  9. Aviram, A. & Ratner, M. A. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Pomerantz, M., Aviram, A., McCorkle, A., Li, L. & Schrott, A. G. Science 255, 1115–1118 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Martin, A. S., Sambles, J. R. & Ashwell, G. J. Phys. Rev. Lett. 70, 218–221 (1993).

    Article  ADS  CAS  Google Scholar 

  12. de Silva, A. P., Gunaratne, H. Q. N. & McCoy, C. P. Nature 364, 42–44 (1993).

    Article  ADS  Google Scholar 

  13. Feringa, B. L., Jager, W. F. & de Lange, B. J. Am. chem. Soc. 113, 5468–5470 (1991).

    Article  CAS  Google Scholar 

  14. Wasielewski, M. R., O'Neil, M. P., Gosztola, D., Niemczyk, M. P. & Svec, W. A. Pure appl. Chem. 64, 1319–1325 (1992).

    Article  CAS  Google Scholar 

  15. Gilat, S. L., Kawai, S. H. & Lehn, J. M. J. chem. Soc., chem. Commun. 1439–1442 (1993).

  16. Goulle, V., Harriman, A. & Lehn, J. M. J. chem. Soc., chem. Commun. 1034–1036 (1993).

  17. Voegtle, F., Mueller, W. M., Mueller, U., Bauer, M. & Rissanen, K. Angew. Chem. int. Edn engl. 32, 1295–1297 (1993).

    Article  Google Scholar 

  18. Bissell, R. A., Cordova, E., Kaifer, A. G. & Stoddart, J. F. Nature 369, 133–137 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Joulie, L. F., Schatz, E., Ward, M. D., Weber, F. & Yellowlees, L. J. J. chem. Soc., Dalton Trans. 799–804 (1994).

  20. Aviram, A. Int. J. Quantum Chem. 42, 1615–1624 (1992).

    Article  CAS  Google Scholar 

  21. Livoreil, A., Dietrich-Buchecker, C. O. & Sauvage, J.-P. J. Am. chem. Soc. 116, 9399–9400 (1994).

    Article  CAS  Google Scholar 

  22. Tor, Y. Artificial Tripodal Ligands: Design, Synthesis and Properties (Weizmann Inst. of Science, Rehovot, Israel, 1990).

    Google Scholar 

  23. Libman, J., Tor, Y. & Shanzer, A. J. Am. chem. Soc. 109, 5880–5881 (1987).

    Article  CAS  Google Scholar 

  24. Kraemer, R., Lehn, J.-M., Cian, A. D. & Fischer, J. Angew. Chem. int. Edn. engl. 32, 703–705 (1993).

    Article  Google Scholar 

  25. Lehn, J.-M. et al. Proc natn. Acad. Sci. U.S.A. 84, 2565–2569 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Williams, A. F., Piguet, C. & Bernadinelli, G. Angew. Chem. int. Edn engl. 30, 1490–1492 (1991).

    Article  Google Scholar 

  27. Piguet, C., Hopfgartner, G., Bocquet, B., Schaad, O. & Williams, A. F. J. Am. chem. Soc. 116, 9092–9102 (1994).

    Article  CAS  Google Scholar 

  28. Constable, E. C. Angew. Chem. int. Edn. engl. 30, 1450–1451 (1991).

    Article  Google Scholar 

  29. Constable, E. C., Hannon, M. J. & Tocher, D. A. Angew. Chem. int. Edn engl. 31, 230–232 (1992).

    Article  Google Scholar 

  30. Raymond, K. N., Mueller, G. & Matzanke, B. F. Top Curr. Chem. 123, 49–102 (1984).

    Article  CAS  Google Scholar 

  31. Hawker, P. N. & Twigg, M. V. (eds Wilkinson, G., Gillard, R. D. & McCleverty, J. A.) 1179–1288 (Pergamon, Oxford, 1987).

  32. Gafni, Y., Weizman, H., Libman, J., Shanzer, A. & Rubinstein, I. J. Am. chem. Soc. (submitted).

  33. van der Helm, D., Baker, J. R., Eng-Wilmot, D. L., Hossain, M. B. & Loghry, R. A. J. Am. chem. Soc. 102, 4224–4231 (1980).

    Article  CAS  Google Scholar 

  34. Emery, T. & Neilands, J. B. J. Am. chem. Soc. 82, 3659–3662 (1960).

    Google Scholar 

  35. Burgess, J. & Prince, R. H. J. chem. Soc., A 1772–1775 (1966).

  36. Saito, Y. in Topics in Stereochemistry Vol. 10 (eds Eliel, F. L. & Allinger, N. L.) 95–174 (Wiley, New York, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelikovich, L., Libman, J. & Shanzer, A. Molecular redox switches based on chemical triggering of iron translocation in triple-stranded helical complexes. Nature 374, 790–792 (1995). https://doi.org/10.1038/374790a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374790a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing