Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Near-surface alignment of polymers in rubbed films

Abstract

RUBBED polymer films (generally polyimides) are used in flat-panel displays to control the alignment of liquid crystals in contact with the polymer1–8, a phenomenon first discovered by Maugin1 in 1911. Buffing the film with a cloth produces liquid-crystal alignment in the rubbing direction. Several mechanisms have been proposed to explain this effect. The generation of microgrooves or scratches on the polymer surface during rubbing has led to the suggestion that alignment is the result of long-range elastic effects induced by these surface features3–5. Others have suggested that the polymer chains near the surface are aligned during rubbing and that these then serve as templates for liquid-crystal alignment6–13. Other studies 10–l2 have implied that both mechanisms might be operative. Here we present X-ray scattering measurements which show unambiguously that rubbing a polyimide film causes near-surface alignment of the polymer molecules. For a film 200 nm thick, most of the polymer chains within a thin surface region (about 5 nm thick) are aligned in the rubbing direction; for a 6-nm film essentially all of the chains are aligned within 20° of the rubbing direction. This marked orientation of the near-surface chains at temperatures far below the bulk glass transition temperature shows that the mechanical properties of the near-surface region differ significantly from those of the bulk polymer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mauguin, C. Bull. Soc. fr. Miner. 34, 71–76 (1911).

    Google Scholar 

  2. Depp, S. W. & Howard, W. E. Scient. Am. 268, 90–97 (1993).

    Article  Google Scholar 

  3. Berreman, D. W. Phys. Rev. Lett. 28, 1683–1686 (1972); Molec. Cryst. liq. Cryst. 23, 215–232 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Zhu, Y.-M. et al. Appl. Phys. Lett. 65, 49–51 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Lee, E. S., Vetter, P., Miyashita, T. & Uchida, T. Jap. J. appl. Phys. 32, L1339–L1341 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Castellano, J.-P. Molec. Cryst. liq. Cryst. 294, 33–41 (1983).

    Article  Google Scholar 

  7. Geary, J. M., Goodby, J. W., Kmetz, A. R. & Patel, J. S. J. appl. Phys. 62, 4100–4108 (1987).

    Article  ADS  CAS  Google Scholar 

  8. van Aerle, N.A.J.M., Barmentlo, M. & Hollering, R. W. J. appl. Phys. 74, 3111–3120 (1993).

    Article  ADS  CAS  Google Scholar 

  9. van Aerle, N.A.J.M. & Tol, A.J.W. Macromolecules 27, 6520–6526 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Feller, M. B., Chen, W. & Shen, Y. R. Phys. Rev. A43, 6778–6792 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Chen, W., Moses, O. T., Shen, Y. R. & Yang, K. H. Phys. Rev. Lett. 68, 1547–1550 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Zuang, X., Marucci, L. & Shen, Y. R. Phys. Rev. Lett. 73, 1513–1516 (1994).

    Article  ADS  Google Scholar 

  13. Kikuchi, H., Logan, J. A. & Yoon, D. Y. Mater. Res. Soc. Symp. Proc. 345, 247–253 (1994).

    Article  Google Scholar 

  14. Fuoss, P. H. & Brennan, S. A. Rev. Mater. Sci. 20, 365–390 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Factor, B. J., Russell, T. P. & Toney, M. F. Macromolecules 26, 2847–2859 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Toney, M. F. & Brennan, S. J. appl. Phys. 65, 4763–4768 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Kochi, M., Horigomi, T. & Mita, I. Recent Advances in Polyimide Science and Technology 192–200 (eds Weber, W. D. & Gupta, M. R.) (Soc. Plastic Engineering, Poughkeepsie, NY, 1987).

    Google Scholar 

  18. Yoon, D. Y., Parrish, W., Depero, L. E. & Ree, M. Mater. Res. Soc. Symp. Proc. 227, 387–393 (1991).

    Article  CAS  Google Scholar 

  19. Brown, H. R. & Russell, T. P. Science (submitted).

  20. Reiter, G. Europhys. Lett. 23, 579–584 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Orts, W. J., van Zanten, J. H., Wu, W. L. & Satija, S. K. Phys. Rev.Lett. 71, 87–90 (1993).

    Article  Google Scholar 

  22. Keddie, J. L., Jones, R. A. L. & Corey, R. A. Europhys. Lett. 27, 59–64 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Bowden, F. P. & Tabor, D. The Friction and Lubrication of Solids Ch. 1 & 2 (Oxford Univ. Press, London, 1950).

    MATH  Google Scholar 

  24. Toney, M. F. & Wiessler, D. W. Acta crystallogr. 49, 624–642 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toney, M., Russell, T., Logan, J. et al. Near-surface alignment of polymers in rubbed films. Nature 374, 709–711 (1995). https://doi.org/10.1038/374709a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374709a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing