Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitric oxide mediates activity-dependent synaptic suppression at developing neuromuscular synapses

Abstract

TEMPORAL correlation between pre- and postsynaptic activities is an important mechanism that regulates synaptic connectivity during development and synaptic plasticity in the adult1–3. In developing neuromuscular junctions, postsynaptic activity is critical in functional suppression and, ultimately, elimination of the synapses4–6. Although repetitive postsynaptic firing asynchronous to the presynaptic activity results in a persistent synaptic suppression7–10, the underlying molecular mechanism remains unknown. Here we provide evidence that nitric oxide (NO), a free radical implicated in several forms of synaptic plasticity11–15, may serve as a retrograde signal for activity-dependent suppression in the neuromuscular synapse. NO donors and activators of the cyclic GMP pathway suppressed spontaneous and evoked synaptic currents. Moreover, the synaptic suppression induced by repetitive postsynaptic depolarization was prevented by the NO-binding protein haemoglobin and by inhibitors of NO synthase. Thus, synaptic suppression may be triggered by NO released from a postsynaptic myocyte that fires asynchronously to the presynaptic terminal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stent, G. Proc. natn. Acad. Sci. U.S.A. 70, 997–1001 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Shatz, C. J. Neuron 5, 745–756 (1990).

    Article  CAS  Google Scholar 

  3. Constaintine-Paton, M., Cline, H. T. & Debski, E. A. Rev. Neurosci. 13, 129–154 (1990).

    Article  Google Scholar 

  4. Betz, W. J. in The Vertebrate Neuromuscular Junction (ed. Salpeter, M. M.) (Liss, New York, 1987).

    Google Scholar 

  5. Srihari, T. & Vrbova, G. J. Neurocytol. 7, 529–540 (1978).

    Article  CAS  Google Scholar 

  6. Ridge, R. M. A. P. & Betz, W. J. J. Neurosci. 4, 2614–2620 (1984).

    Article  CAS  Google Scholar 

  7. Lo, Y. & Poo, M.-m. Science 254, 1019–1023 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Dan, Y. & Poo, M.-m. Science 256, 1570–1573 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Lo, Y. J. & Poo, M.-m. J. Neurosci. 14, 4684–4693 (1994).

    Article  CAS  Google Scholar 

  10. Lo, Y. J., Lin, Y. C., Sanes, D. H. & Poo, M.-m. J. Neurosci. 14, 4694–4704 (1994).

    Article  CAS  Google Scholar 

  11. Bohme, G. A., Bon, C., Stutzmann, J., Doble, A. & Blachard, J. Eur. J. Pharmac. 199, 379–381 (1991).

    Article  CAS  Google Scholar 

  12. Schuman, E. M. & Madison, D. V. Science 254, 1503–1506 (1991).

    Article  ADS  CAS  Google Scholar 

  13. O'Dell, T. J., Hawkins, R., Kandel, E. R. & Arancio, O. Proc. natn. Acad. Sci. U.S.A. 88, 11285–11289 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Schuman, E. M. & Madison, D. V. Science 263, 532–536 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Shibuki, K. & Okada, D. Nature 349, 326–328 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Lu, B., Greengard, P. & Poo, M. M. Neuron 8, 521–529 (1992).

    Article  CAS  Google Scholar 

  17. Southam, E. & Garthwaite, J. Neurosci. Lett. 130, 107–111 (1991).

    Article  CAS  Google Scholar 

  18. Bredt, D. S. & Snydr, S. H. Neuron 8, 3–11 (1992).

    Article  CAS  Google Scholar 

  19. Staminer, J. S. Cell 78, 931–936 (1994).

    Article  Google Scholar 

  20. Hess, D. T., Patterson, S. I., Smith, D. S. & Skene, J. H. P. Nature 366, 562–565 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Wolin, M. S. J. biol. Chem. 257, 13312–13320 (1982).

    CAS  PubMed  Google Scholar 

  22. Gruetter, C. A., Gruetter, D. Y., Lyon, J. E., Kadowitz, P. J. & Ignarro, L. J. J. Pharmac. exp. Ther. 219, 181–186 (1981).

    CAS  Google Scholar 

  23. Kidokoro, Y. Neurosci. Res. 1, 157–170 (1984).

    Article  CAS  Google Scholar 

  24. Izumi, Y., Clifford, D. B. & Zorumski, C. F. Science 257, 1273–1276 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Martin, W., Villani, G. M., Jothianandan, D. & Furchgott, R. F. J. Pharmac. exp. Ther. 232, 708–716 (1985).

    CAS  Google Scholar 

  26. Crepel, F. & Jaillard, D. Neuroreport 1, 133–136 (1990).

    Article  CAS  Google Scholar 

  27. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Ghez, C. in Principle of Neural Science (eds Kandel, E. R., Schwartz, J. H. & Jessell, T. M.) (Appleton & Lange, Norwalk, CT, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Xie, Z. & Lu, B. Nitric oxide mediates activity-dependent synaptic suppression at developing neuromuscular synapses. Nature 374, 262–266 (1995). https://doi.org/10.1038/374262a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374262a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing