Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tidal effects of disconnected hydrocarbon seas on Titan

Abstract

THERMODYNAMIC and photochemical arguments1–4 suggest that Titan, the largest satellite of Saturn, has a deep ocean of liquid hydrocarbons. At visible wavelengths, Titan's surface is obscured by a thick stratospheric haze, but radar observations5–7 have revealed large regions of high surface reflectivity that are inconsistent with a global hydrocarbon ocean. Titan's surface has also been imaged at infrared wavelengths8–10, and the highest-resolution data (obtained by the Hubble Space Telescope) show clear variations in surface albedo and/or topography10. The natural interpretation of these observations is that Titan, like the Earth, has continents and oceans. But Titan's high orbital eccentricity poses a problem for this interpretation, as the effects of oceanic tidal friction would have circularized Titan's orbit for most configurations of oceans and continents1,11. Here we argue that a more realistic topography, in which liquid hydrocarbons are confined to a number of disconnected seas or crater lakes, may satisfy both the dynamical and observational constraints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sagan, C. & Dermott, S. F. Nature 300, 731–733 (1982).

    Article  ADS  Google Scholar 

  2. Flasar, F. M. Science 221, 55–57 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Lunine, J. I., Stevenson, D. J. & Yung, Y. K. Science 222, 1229–1230 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Lunine, J. I. Rev. Geophys. 31, 133–149 (1993).

    Article  ADS  Google Scholar 

  5. Muhleman, D. O., Grossman, A. W., Butler, B. J. & Slade, M. A. Science 248, 975–980 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Muhleman, D. O., Grossman, A. W., Slade, M. A. & Butler, B. J. (abstr.) Bull. Am. astr. Soc. 24, 954–955 (1992).

    Google Scholar 

  7. Grossman, A. W. & Muhleman, D. O. (abstr.) Bull. Am. astr. Soc. 24, 954 (1992).

    ADS  Google Scholar 

  8. Lemmon, M. T., Karkoschka, E. & Tomasko, M. Icarus 103, 329–332 (1993).

    Article  ADS  Google Scholar 

  9. Griffith, C. A. Nature 364, 511–514 (1993).

    Article  ADS  Google Scholar 

  10. Smith, P. H., Lemmon, M. T., Caldwell, J. J., Allison, M. D. & Sromovsky, L. A. (abstr.) Bull. Am. astr. Soc. 26, 1181 (1994).

    ADS  Google Scholar 

  11. Sears, W. D. (abstr.) Bull. Am. astr. Soc. 26, 1184 (1994); Icarus (in the press).

    ADS  Google Scholar 

  12. Lambeck, K. The Earth's Variable Rotation: Geophysical Causes and Consequences 295 (Cambridge Univ. Press, Cambridge, 1980).

    Book  Google Scholar 

  13. Webb, D. J. Contemp. Phys. 23, 419–442 (1982).

    Article  ADS  Google Scholar 

  14. Burns, J. A. in Satellites (eds Burns, J. A. & Matthews, M. S.) 117–158 (Univ. Arizona Press, Tucson, 1986).

    Google Scholar 

  15. Dermott, S. F. Icarus 37, 310–321 (1979).

    Article  ADS  Google Scholar 

  16. Smith, B. A. et al. Science 212, 163–191 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Engel, S., Hartmann, W. K. & Lunine, J. I. (abstr.) Bull. Am. astr. Soc. 26, 1183 (1994).

    ADS  Google Scholar 

  18. Merian, J. R. Über die Bewegung tropfbarer Flüssigkeiten in Gefässen (Basle, 1828).

    Google Scholar 

  19. Turcotte, D. L. & Schubert, G. Geodynamics (Wiley, New York, 1982).

    Google Scholar 

  20. Sagan, C. & Dermott, S. (abstr.) Bull. Am. astr. Soc. 26, 1183 (1994).

    ADS  Google Scholar 

  21. Chapman, C. R. & McKinnon, W. B. in Satellites (eds Burns, J. A. & Matthews, M. S.) 492–580 (Univ. Arizona Press, Tucson, 1986).

    Google Scholar 

  22. Peale, S. J., Cassen, P. & Reynolds, R. T. Icarus 43, 65–72 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dermott, S., Sagan, C. Tidal effects of disconnected hydrocarbon seas on Titan. Nature 374, 238–240 (1995). https://doi.org/10.1038/374238a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374238a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing