Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Confounding influence of magnetic fabric on sedimentary records of a field reversal

Abstract

RECENT compilations of geomagnetic reversal records1–8 have generated a controversy as to whether the geomagnetic field is geographically biased during polarity transitions. At present there is general agreement that the virtual geomagnetic poles recorded from Cenozoic sediments preferentially lie over the Americas (or the antipodal longitude), yet such a preference is not statistically established7,9. However, it is intriguing that the claimed preferred paths lie 90° away from the site longitude4,9. Although this may be partly inherent in the very poor geographical distribution of the sites, we prefer not to rely on fortuitous coincidences. Several authors have argued that sedimentary palaeomagnetic records may be modified by artefacts linked to the acquisition of magnetization10–13. Here we report that in two sedimentary records of the Upper Olduvai reversal from Confidence Hills, California, the declinations of the remanent magnetization recorded during the reversal are similar to the directions of the maximum horizontal axes of the ellipsoids of magnetic anisotropy. This supports the idea that, at times of low geomagnetic intensity (such as during a reversal), factors other than the geomagnetic field influence the orientation of elongated grains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clement, B. M. Earth planet. Sci. Lett. 104, 48–58 (1991).

    Article  ADS  Google Scholar 

  2. Tric, E. et al. Phys. Earth planet. Inter. 65, 319–336 (1991).

    Article  ADS  Google Scholar 

  3. Laj, C., Mazaud, A., Fuller, M., Weeks, R. & Herrero-Bervera, E. Nature 351, 447 (1991).

    Article  ADS  Google Scholar 

  4. Valet J. P., Tucholka, P., Courtillot, V. & Meynadier, L. Nature 356, 400–407 (1992).

    Article  ADS  Google Scholar 

  5. Hoffman, K. A. Nature 359, 789–794 (1992).

    Article  ADS  Google Scholar 

  6. Bogue, S. W. & Merrill, R. T. A. Rev. Earth planet. Sci. 20, 181–219 (1992).

    Article  ADS  Google Scholar 

  7. McFadden, P. L., Barton, C. E. & Merill, R. T. Nature 361, 342–344 (1993).

    Article  ADS  Google Scholar 

  8. Prévot, M. & Camps, P. Nature 366, 53–57 (1993).

    Article  ADS  Google Scholar 

  9. Quidelleur, X. & Valet, J. P. Phys. Earth. planet. Inter. 82, 27–48 (1994).

    Article  ADS  Google Scholar 

  10. Rochette, P. Earth planet. Sci. Lett. 98, 33–39 (1990).

    Article  ADS  Google Scholar 

  11. Van Hoof, A. A. M. & Langereis, C. G. Nature 351, 223–225 (1991).

    Article  ADS  Google Scholar 

  12. Langereis, C. G., van Hoof, A. A. M. & Rochette, P. Nature 358, 226–230 (1992).

    Article  ADS  Google Scholar 

  13. Kent, D. V. & Schneider, D. A. C. EOS (abstr.) 75, 119 (1994).

    Google Scholar 

  14. Holt, J. W. & Kirschvink, J. L. Earth planet. Sci. Lett (submitted).

  15. Chauvin, A., Roperch, P. & Duncan, R. A. J. geophys. Res. 95, 2727–2752 (1990).

    Article  ADS  Google Scholar 

  16. Ising, G. Astron. Och Fysils. 29A, 1–37 (1942).

    Google Scholar 

  17. Graham, J. W. Geol. Soc. Am. Abstr. Progm. 65, 2257 (1954).

    Google Scholar 

  18. Granar, L. Ark. Geofys. 3, 1–40 (1958).

    Google Scholar 

  19. Rees, A. I. Sedimentology 4, 257–271 (1965).

    Article  ADS  Google Scholar 

  20. Hamilton, N. & Rees, A. I. Paleogeophysics (ed. Runcorn, S. K.) 445–464 (Academic, New York, 1970).

    Google Scholar 

  21. Kent, D. V. & Lowrie, W. Earth planet. Sci. Lett. 28, 1–12 (1975).

    Article  ADS  Google Scholar 

  22. Banerjee, S. K., King, J. & Marvin, J. Geophys. Res. Lett. 8, 333–336 (1981).

    Article  ADS  Google Scholar 

  23. King, J., Banerjee, S. K., Marvin, J. & Özdemir, Ö Earth planet. Sci. Lett. 59, 404–419 (1982).

    Article  ADS  Google Scholar 

  24. McCabe, C., Jackson, M. & Ellwood, B. B. Geophys. Res. Lett. 12, 333–336 (1985).

    Article  ADS  Google Scholar 

  25. Jelinek, V. The Statistical Theory of Measuring Anisotropy of Magnetic Susceptibility of Rocks and its Application (Geofyzika, Brno, 1977).

    Google Scholar 

  26. Ellwood, B. B. Mar. Geol. 34, 83–90 (1980).

    Article  Google Scholar 

  27. Jackson, M . Gruber, W., Marvin, J. & Banerjee, S. K. Geophys. Res. Lett. 15, 440–443 (1988).

    Article  ADS  Google Scholar 

  28. Hrouda, F. Geophys. Surv. 5, 37–82 (1982).

    Article  ADS  Google Scholar 

  29. Borradaile, G. Tectonophysics 156, 1–20 (1988).

    Article  ADS  Google Scholar 

  30. Opdyke, N. D. & Henry, K. W. Earth planet. Sci. Lett. 6, 138–151 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quidelleur, X., Holt, J. & Valet, JP. Confounding influence of magnetic fabric on sedimentary records of a field reversal. Nature 374, 246–249 (1995). https://doi.org/10.1038/374246a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374246a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing