Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA

Abstract

LACTOFERRIN, an iron-binding glycoprotein found in high concentrations in human milk and other epithelial secretions1 and in the secondary (specific) granules of neutrophils2, is thought to be responsible for primary defence against microbial infection, mainly as a result of lactoferrin sequestration of iron required for microbial growth3. Many other functions have been attributed to lactoferrin, including immunomodulation and cell growth regulation (reviewed in ref. 4). Some of these functions appear to be at least in part independent of the iron-binding activity of lactoferrin. It also has been consistently observed that lactoferrin interacts avidly with nucleic acids5–7. Lactoferrin enhancement of the activity of natural killer and lymphokine-activated killer cells in vitro is inhibited by RNA and DNA8. Lactoferrin taken up by K562 human myelogenous leukaemia cells appears in the nucleus where it is bound to DNA9. We report here that binding of lactoferrin to DNA occurs under stringent conditions with distinct sequence specificity, and that interaction between lactoferrin and these sequences intracellularly leads to transcriptional activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lonnerdal, B. & Woodhouse, L. Nutr. Res. 8, 853–858 (1988).

    Article  Google Scholar 

  2. Spik, G. et al. Br. Med. J. 5, 69–74 (1978).

    Google Scholar 

  3. Weinberg, E. D. Microbiol. Rev. 42, 45–66 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lyer, S. & Lonnerdal, B. Eur. J. clin. Nutr. 47, 232–241 (1993).

    Google Scholar 

  5. Bennett, R. M. et al. J. clin. Invest. 71, 611–618 (1983).

    Article  CAS  Google Scholar 

  6. Hutchens, T. W. et al. Pediat. Res. 29, 243–250 (1991).

    Article  CAS  Google Scholar 

  7. Bennett, R. M. & Davis, J. J. Immun. 127, 1211–1216 (1981).

    CAS  PubMed  Google Scholar 

  8. Shau, H. et al. J. Leuk. Biol. 51, 343–349 (1992).

    Article  CAS  Google Scholar 

  9. Garre, C. et al. J. Cell Physiol. 153, 477–482 (1992).

    Article  CAS  Google Scholar 

  10. Siebenlist, U. et al. Cell 37, 381–388 (1984).

    Article  CAS  Google Scholar 

  11. Zhang, X. Y. et al. Analyt. Biochem. 201, 366–370 (1992).

    Article  CAS  Google Scholar 

  12. Walmer, D. K. et al. Endocrinology 131, 1458–1466 (1992).

    Article  CAS  Google Scholar 

  13. Meier, U. T. & Blobel, G. J. Cell Biol. 111, 2235–2245 (1990).

    Article  CAS  Google Scholar 

  14. Ziere, G. J. et al. J. biol. Chem. 268, 27069–27075 (1993).

    CAS  PubMed  Google Scholar 

  15. Bezault, J. et al. Cancer Res. 54, 2310–2312 (1994).

    CAS  PubMed  Google Scholar 

  16. Broxmeyer, H. E. et al. Blood Cells 13, 31–48 (1987).

    CAS  PubMed  Google Scholar 

  17. Zucali, J. R. et al. Blood 69, 33–37 (1987).

    CAS  PubMed  Google Scholar 

  18. Zucali, J. R. et al. Blood 70, 191a (1987).

    Google Scholar 

  19. Hashizume, S. et al. Biochim. biophys. Acta 763, 377–382 (1983).

    Article  CAS  Google Scholar 

  20. Green, C. et al. Proc. Soc. exp. Biol. Med. 137, 1311–1317 (1971).

    Article  CAS  Google Scholar 

  21. Miyauchi, J. & Watanabe, Y. Cell Tissue Res. 247, 249–258 (1987).

    Article  CAS  Google Scholar 

  22. Weinberg, E. D. Life Sci. 50, 1289–1297 (1992).

    Article  CAS  Google Scholar 

  23. Funk, W. D. et al. Molec. cell. Biol. 12, 2866–2871 (1992).

    Article  CAS  Google Scholar 

  24. Rikitake, Y. & Moran, E. Molec. cell. Biol. 12, 2826–2836 (1992).

    Article  CAS  Google Scholar 

  25. Higuchi, R. et al. Nucleic Acids Res. 16, 7351–7369 (1988).

    Article  CAS  Google Scholar 

  26. Seed, B. & Sheen, J. Y. Gene 67, 271–278 (1988).

    Article  CAS  Google Scholar 

  27. An, G. et al. Molec. cell. Biol. 2, 1628–1633 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Furmanski, P. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 373, 721–724 (1995). https://doi.org/10.1038/373721a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373721a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing