Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Monday 23 October 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 372, 666 - 669 (15 December 1994); doi:10.1038/372666a0

The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures

Daniel C. Nepstad*, Claudio R. de Carvalho, Eric A. Davidson*, Peter H. Jipp*, Paul A. Lefebvre*, Gustavo H. Negreiros*, Elson D. da Silva, Thomas A. Stone*, Susan E. Trumbore§ & Simone Vieira*

*Woods Hole Research Center, Woods Hole, Massachusetts 02543, USA
EMBRAPA-CPATU, CP 48, Belém, Pará 66.001, Brazil
§Department of Earth System Sciences, University of California, Irvine, California 92717, USA
Present address: Department of Environmental Studies, Duke University, Durham, North Carolina 27708, USA.

DEFORESTATION and logging transform more forest in eastern and southern Amazonia than in any other region of the world1–3. This forest alteration affects regional hydrology4–11 and the global carbon cycle12–14, but current analyses of these effects neglect an important deep-soil link between the water and carbon cycles. Using rainfall data, satellite imagery and field studies, we estimate here that half of the closed forests of Brazilian Amazonia depend on deep root systems to maintain green canopies during the dry season. Evergreen forests in northeastern Pará state maintain evapotranspiration during five-month dry periods by absorbing water from the soil to depths of more than 8m. In contrast, although the degraded pastures of this region also contain deep-rooted woody plants, most pasture plants substantially reduce their leaf canopy in response to seasonal drought, thus reducing dry-season evapotranspiration and increasing potential subsurface runoff relative to the forests they replace. Deep roots that extract water also provide carbon to the soil. The forest soil below 1 m depth contains more carbon than does above-ground biomass, and as much as 15% of this deep-soil carbon turns over on annual or decadal timescales. Thus, forest alteration that affects depth distributions of carbon inputs from roots may also affect net carbon storage in the soil.

------------------

References

1. FAO Forestry Pap. 112 (FAO, Rome, 1993).
2. Fearnside, P. M. Ambio 22, 537−545 (1993).
3. Skole, D. & Tucker, C. Science 260, 1905−1910 (1993). | PubMed | ISI |
4. Chahine, M. T. Nature 359, 373−380 (1992). | Article |
5. Dickinson, R. E. & Henderson-Sellers, A. Q. Jl R. met. Soc. 114, 439−462 (1988).
6. Victoria, R. L., Martinelli, L. A., Mortatti, J. & Richey, J. Ambio 20, 384−387 (1991).
7. Shuttleworth, W. J. et al. J. Hydrol. 129, 71−85 (1991). | Article |
8. Nobre, C., Sellers, P. & Shukla, J. J. Clim. 4, 957−988 (1991). | Article | ISI |
9. Shukla, J., Nobre, C. A. & Sellers, P. Science 247, 1322−1325 (1990). | ISI |
10. Lean, J. & Warrilow, D. A. Nature 342, 411−413 (1989). | Article |
11. Salati, E., Dall'Olio, A., Gat, J. & Natsui, E. Wat. Resour. Res. 15, 1250−1258 (1979). | ChemPort |
12. Houghton, J. T., Jenkins, G. J. & Elphraums, J. J. (eds) Climate Change. The IPCC Scientific Assessment (Cambridge Univ. Press, New York, 1990).
13. Houghton, J. T., Callander, B. A. & Varney, S. K. (eds) The Supplementary Report to the IPCC Scientific Assessment (Cambridge Univ. Press, New York, 1992).
14. Houghton, R. A. Clim. Change 19, 99−118 (1991). | Article | ChemPort |
15. Uhl, C., Buschbacher, R. & Serrão, E. A. S. J. Ecol. 76, 663−681 (1988). | ISI |
16. Nepstad, D. C., Uhl, C. & Serrão, E. A. S. Ambio 20, 248−255 (1991). | ISI |
17. Mattos, M. M. & Uhl, C. Wld Dev. 22, 145−158 (1994).
18. Richter, D. D. & Babbar, L. I. Adv. Ecol. Res. 21, 315−389 (1991).
19. Nepstad, D. C. thesis, Yale Univ. (1989).
20. Potter, C. S. et al. Globl Biogeochem. Cycles 74, 811−841 (1993).
21. Sombroek, W., Nachtergaele, F. O. & Hebel, A. Ambio 22, 417−426 (1993).
22. Trumbore, S. E. Globl Biogeochem. Cycles 7, 275−290 (1993). | ChemPort |
23. Veldkamp, E. Soil Sci. Soc. Am. J. 58, 175−180 (1994). | ISI |
24. Lugo, A. E. & Brown, S. Pl. Soil 149, 27−41 (1993). | ChemPort |
25. Detwiler, R. P. Biogeochemistry 2, 67−93 (1986). | ChemPort |
26. Fisher, M. J. et al. Nature 371, 236−238 (1994). | Article | ISI |
27. Poels, R. I. H. Soils, Water and Nutrients in a Forest Ecosystem in Surinam (Agric. Univ., Waageningen, The Netherlands, 1987).
28. Global Vegetation Index User's Guide (ed. Kidwell, K. B.) (NOAA, Washington DC, 1990).
29. Stone, T. A., Schlesinger, P., Houghton, R. A. & Woodwell, G. M. Photogram. Eng. and Rem. Sens. 60, 541−551 (1994).
30. Uhl, C., Kauffman, J. B. & Silva, E. D. Ciência Hoje 65, 25−32 (1990).
31. Topp, G. C., Davis, J. L. & Annan, A. P. Wat. Resour. Res. 16, 574−582 (1980). | ISI |
32. Topp, G. C. & Davis, J. L. Soil Sci. Soc. Am. J. 49, 19−24 (1985).



© 1994 Nature Publishing Group
Privacy Policy