Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Melt topology in partially molten mantle peridotite during ductile deformation

Abstract

THE process by which basaltic melt is generated and extracted beneath mid-ocean ridges is poorly understood. Knowledge of the distribution of melt within the parent mantle peridotite during the early stages of melting is important for interpretation of geophys-ical experiments and for construction of models of magma coalescence and extraction1–4. Static experiments on mantle rocks and selected analogue materials have shown that, for small melt fractions, melt is concentrated along three-grain intersections, forming an interconnected web of tubes5–9. Low-pressure deforma-tion experiments on olivine + melt specimens have yielded the same conclusion10,11. But in similar experiments on salt–brine mixtures during ductile deformation, the fluid emerges from the triple junctions where it resides under static conditions and spreads onto grain boundaries12–16. Here we report the results of low-stress deformation experiments on partially molten peridotite at mantle temperatures and pressures, which show that such dynamic melting produces microstructures analogous to those of the salt–brine experiments. The very low viscosity of these specimens suggests that in the Earth, dynamic wetting could lead to melt separation at very low melt fractions, and to melt focusing at ridges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shankland, T., O'Connell, R. J. & Waff, H. S. Rev. Geophys. Space Phys. 19, 394–406 (1981).

    Article  ADS  Google Scholar 

  2. Schmelling, H. J. J. geophys. Res. 90, 10105–10116 (1985).

    Article  ADS  Google Scholar 

  3. Scott, D. R. & Stevenson, D. T. J. geophys. Res. 91, 9283–9295 (1986).

    Article  ADS  Google Scholar 

  4. Forsyth, D. W. in Mantle Flow and Melt Generation of Mid-Ocean Ridges (eds Morgan, J. P., Blackman, D. Y. & Sinton, J. M.) 1–65 (Am. Geophys. Union, Washington DC, 1993).

    Google Scholar 

  5. Waff, H. S. & Bulau, J. R. in High-Pressure Research in Geophysics (eds Akimoto, S. & Manghnani, M. H.) 229–236 (Center for Academic Publications, Tokyo, 1982).

    Book  Google Scholar 

  6. Toramaru, A. & Fujii, N. J. geophys. Res. 91, 9239–9252 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Watson, E. B., Brenan, J. M. & Baker, D. R. in Continental Mantle (ed. Menzies, M. A.) 111–124 (Clarendon, Oxford, 1990).

    Google Scholar 

  8. Von Bargen, N. & Waff, H. S. J. geophys. Res. 91, 9261–9276 (1986).

    Article  ADS  Google Scholar 

  9. Waff, H. S. & Faul, U. H. J. geophys. Res. 97, 9003–9014 (1992).

    Article  ADS  Google Scholar 

  10. Cooper, R. F. & Kohlstedt, D. L. Tectonophysics 107, 207–233 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Cooper, R. F. & Kohlstedt, D. L. J. geophys. Res. 91, 9315–9223 (1986).

    Article  ADS  Google Scholar 

  12. Urai, J. L. Tectonophysics 96, 125–157 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Urai, J. L. Tectonophysics 120, 285–317 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Urai, J. L. Tectonophysics 135, 251–263 (1987).

    Article  ADS  Google Scholar 

  15. Urai, J. L., Spiers, C. J., Peach, C. J., Fyanssen, R. C. M. W. & Liezenberg, J. L. Geol. Mijnb. 66, 165–176 (1987).

    Google Scholar 

  16. Spiers, C. T. & Schutjens, P. M. T. M. in Deformation Processes in Minerals, Ceramics and Rocks (eds Barber, D. J. & Meredith, P. G.) 334–353 (Unwin Hyman, London, 1990).

    Book  Google Scholar 

  17. Beeman, M. & Kohlstedt, D. L. J. geophys. Res. 98, 6443–6452 (1993).

    Article  ADS  Google Scholar 

  18. Bussod, G. Y. & Christie, J. M. J. Petrology (spec. Iherzolite issue) 17–39 (1991).

  19. Green, H. W. & Borch, R. S. Eur. J. Mineral. 1, 213–219 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Tingle, T. N., Green, H. W., Scholz, C. H. & Koczynski, T. A. J. struct. Geol. 15, 1249–1256 (1993).

    Article  ADS  Google Scholar 

  21. Borch, R. S. & Green, H. W. EOS 71, 629 (abstr.) (1990).

    Google Scholar 

  22. Borch, R. S., Green, H. W. & Jin, Z-M. in Proc. 20th gen. Assembly, Int. Un. Geod. and Geophys. Vienna, October 1991; IASPEI Prog. Abstr. 169.

    Google Scholar 

  23. Smith, D. L. & Evans, B. J. geophys. Res. 89, 4125–4135 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Wanamaker, B. T. & Evans, B. in Point Defects in Minerals (ed. Schock, R. N.) 194–210 (Am. Geophys. Union, Washington DC, 1985).

    Google Scholar 

  25. Hickman, S. H. & Evans, B. Phys. Chem. Miner. 15, 91–102 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Nichols, F. A. & Mullins, W. W. J. appl. Phys. 36, 1826–1835 (1965).

    Article  ADS  Google Scholar 

  27. Nichols, F. A. & Mullins, W. W. Trans. AIME 233, 1940–1948 (1965).

    Google Scholar 

  28. Kohlstedt, D. L., Goetze, C., Durham, W. B. & Vauder Sande, J. B. Science 191, 1045–1091 (1976).

    Article  ADS  CAS  Google Scholar 

  29. Zeuch, D. H. & Green, H. W. Contr. Miner. Petrol. 62, 141–151 (1977).

    Article  ADS  Google Scholar 

  30. Urai, J. L., Spiers, C. T., Zwart, H. W. & Lister, G. S. Nature 324, 554–557 (1986).

    Article  ADS  Google Scholar 

  31. Tullis, J., Yund, R. & Farver, J. EOS 74, 611 (abstr.) (1993).

    Article  Google Scholar 

  32. Jin, Z-M., Green, H. W. & Borch, R. S. Tectonophysics 169, 23–50 (1989).

    Article  ADS  Google Scholar 

  33. Green, H. W. & Gueguen, Y. Nature 249, 617–620 (1974).

    Article  ADS  Google Scholar 

  34. Green, H. W. in Electron Microscopy in Mineralogy (eds Wenk, et al.) 443–462 (Springer, Berlin, 1976).

    Book  Google Scholar 

  35. Blackman, D. K., Orcutt, J. A., Forsyth, D. W. & Kendall, J-M. Nature 366, 675–677 (1993).

    Article  ADS  Google Scholar 

  36. Nicolas, A. Structure of Ophiolites and Dynamics of Oceanic Lithosphere (Kluwer Academic, Dordrecht, 1989).

    Book  Google Scholar 

  37. Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. J. geophys. Res. 95, 2661–2678 (1990).

    Article  ADS  Google Scholar 

  38. Sparks, D. W. & Parmentier, E. M. Earth planet Sci. Lett. 105, 368–377 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, ZM., Green, H. & Zhou, Y. Melt topology in partially molten mantle peridotite during ductile deformation. Nature 372, 164–167 (1994). https://doi.org/10.1038/372164a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372164a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing