Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical measurements of the superconducting gap in single-crystal K3C60 and Rb3C60

Abstract

THE mechanism of superconductivity in alkali-metal compounds of C6o (refs 1, 2) remains controversial. Electron-pairing mechanisms based on electron-phonon coupling involving both low-frequency (intermolecular) vibrations3 and high-frequency (intramolecular) modes4,5—the strong-coupling and weak-coupling cases respectively—have been proposed. These two mechanisms have different associated energy scales, which is reflected in the magnitude of the superconducting energy gap. Measurements of the gap for these compounds have been reported previously for powder samples6–8, but are somewhat discrepant or ambiguous, perhaps owing to grain-size or grain-junction effects. Here we report measurements on large single-crystal samples of K3C60 and Rb3C60 using optical reflectivity. We obtain values for the reduced gap ratio, 2Δ/k8Tc of 3.44 and 3.45 respectively, consistent with predictions for a mechanism based on standard Bardeen-Cooper-Schrieffer (BCS) electron-phonon coupling to intramolecular modes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hebard, A. F. et al. Nature 350, 600–601 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Holczer, K. et al. Science 252, 1154–1157 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Zhang, F. C., Ogata, M. & Rice, T. M., Phys. Rev. Lett. 67, 3452–3455 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Varma, C. M., Zaanen, J. & Raghavachari, K. Science 254, 989–992 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Schluter, M., Lannoo, M., Needels, M., Baraff, G. A. & Tomanek D. Phys. Rev. Lett 68, 526–529 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Zhang, Z., Chen, C.-C., Kelty, S. P., Dai, H. & Lieber, C.M. Nature 353, 333–335 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Kiefl, R. F. et al. Phys. Rev. Lett. 70, 3987–3990 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Degiorgi, L. et al. Phys. Rev. B49, 7012–7025 (1994).

    Article  CAS  Google Scholar 

  9. Xiang, X. D. et al. Science 256, 1190–1191 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Xiang, S. D., Hou, J. G., Crespi, V. H., Zettl, A. & Cohen, M. L. Nature 361, 54–56 (1993).

    Article  ADS  Google Scholar 

  11. Martin, M. C., Koller, D. & Mihaly, L. Phys. Rev. B47, 14607–14610 (1993).

    Article  CAS  Google Scholar 

  12. Iwasa, Y., Yasuda, T., Koda, T. & Koda, S. Phys. Rev. Lett 69, 2284–2287 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Bonn, D. A. et al. Phys. Rev. B35, 8843–8845 (1987).

    Article  CAS  Google Scholar 

  14. Mattis, D. C. & Bardeen, J. Phys. Rev. 111, 412–417 (1958).

    Article  ADS  Google Scholar 

  15. Ramirez, A. P. et al. Phys. Rev. Lett. 68, 1058–1060 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Ramirez, A. P., Rosseinsky, M. J., Murphy, D. W. & Haddon, R. C. Phys. Rev. Lett. 69, 1687–1690 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Quirion, G. et al. Europhys. Lett. 21, 233–238 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Rotter, L. D. et al. Nature 355, 532–534 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Fitzgerald, S. A., Kaplan, S. C., Rosenberg, A., Sievers, A. J. & McMordie, R. A. S. Phys. Rev B45, 10165–10168 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degiorgi, L., Briceno, G., Fuhrer, M. et al. Optical measurements of the superconducting gap in single-crystal K3C60 and Rb3C60. Nature 369, 541–543 (1994). https://doi.org/10.1038/369541a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369541a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing