Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism of the transition from fractal to dendritic growth of surface aggregates

Abstract

THE similarity of many patterns formed in non-equilibrium growth processes in physics, chemistry and biology is conspicuous, and many attempts have been made to discover common mechanisms underlying their formation1. A central question is what causes some patterns to be dendritic (symmetrically branched, like snowflakes) and others fractal (randomly ramified). In general, the transition from fractal to dendritic growth is regarded as a manifestation of the predominance of anisotropy over random noise in the growth process. In electrochemical deposition, this transition is observed as the growth speed is varied2,3. Here we report a crossover from fractal to dendritic growth in two dimensions on the microscopic scale. We use the scanning tunnelling microscope to study diffusion-limited aggregation of silver atoms on a Pt(lll) surface. The transition occurs as the deposition flux is increased, and our observations suggest that the increasing importance of anisotropy of edge diffusion at higher flux is responsible for this crossover. We anticipate that a similar phenomenon may operate in three-dimensional crystal growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Takayasu, H. Fractals in the Physical Sciences (Manchester Univ. Press, New York, 1990).

    MATH  Google Scholar 

  2. Sawada, Y., Dougherty, A. & Gollub, J. P. Phys. Rev. Lett. 56, 1260–1263 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Grier, D., Ben-Jacob, E., Clarke, R. & Sander, L. M. Phys. Rev. Lett. 56, 1264–1267 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Witten, T. A. & Sander, L. M. Phys. Rev. Lett. 47, 1400–1403 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Meakin, P. Phys. Rev. A27, 1495–1507 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Hwang, R. Q., Schröder, J., Günther, C. & Behm, R. J. Phys. Rev. Lett. 67, 3279–3282 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Röder, H., Hahn, E., Brune, H., Bucher, J. P. & Kern, K. Nature 366, 141–143 (1993).

    Article  ADS  Google Scholar 

  8. Eckmann, J. P., Meakin, P., Procaccia, I. & Zeitak, R. Phys. Rev. Lett. 65, 52–55 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Meakin, P. Phys. Rev. A33, 3371–3382 (1986).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Ben-Jacob, E., et al. Phys. Rev. Lett. 55, 1315–1318 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Buka, A., Kertész, J. & Vicsek, T. Nature 323, 424–425 (1986).

    Article  ADS  Google Scholar 

  12. Horváth, V., Vicsek, T. & Kertész, J. Phys. Rev. A35, 2353–2356 (1987).

    Article  ADS  Google Scholar 

  13. Couder, Y., Cardoso, O., Dupuy, D., Tavernier, P. & Thom, W. Europhys. Lett. 2, 437–443 (1986).

    Article  ADS  Google Scholar 

  14. Nittmann, J. & Stanley, H. E. Nature 321, 663–668 (1986).

    Article  ADS  Google Scholar 

  15. Nittmann, J. & Stanley, H. E. J. Phys. A 20, L1185–L1191 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Meakin, P. Phys. Rev. A36, 332–339 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Vicsek, T. Fractal Growth Phenomena (World Scientific, Singapore, 1989).

    Book  Google Scholar 

  18. Eckmann, J. P., Meakin, P., Procaccia, I. & Zeitak, R. Phys. Rev. A39, 3185–3195 (1989).

    Article  MathSciNet  CAS  Google Scholar 

  19. Brune, H., Röder, H., Boragno, C. & Kern, K. Phys. Rev. B49, 2997 (1994).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  20. Michely, T., Hohage, M., Bott, M. & Comsa, G. Phys. Rev. Lett. 70, 3943–3946 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Ehrlich, G. Surf. Set. 246, 1–12 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, H., Romainczyk, C., Röder, H. et al. Mechanism of the transition from fractal to dendritic growth of surface aggregates. Nature 369, 469–471 (1994). https://doi.org/10.1038/369469a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369469a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing