Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The curvature elastic-energy function of the lipid–water cubic mesophase

Abstract

CELL and lipid membranes are able to bend, as manifested during membrane fusion and the formation of non-lamellar lyotropic mesopbases in water. But there is an energy cost to bending of lipid layers, called the curvature elastic energy. Although the functional form of this energy is known1, a complete quantitative knowledge of the curvature elastic energy, which is central to predicting the relative stability of the large number of phases that lipid membranes can adopt, has been lacking. Here we use X-ray synchrotron diffraction measurements of the variation of lattice parameter with pressure and temperature for the periodic Ia3d (Q230) cubic phase of hydrated monoolein to calculate the complete curvature elastic-energy function for the lipid cubic mesophase. This allows us to predict the stabilities of different cubic and lamellar phases for this system as a function of composition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Helfrich, W. Z. Naturf. 28C, 693–703 (1973)

    Article  Google Scholar 

  2. Gruner, S. M. J. phys. Chem. 93, 7562–7570 (1989).

    Article  CAS  Google Scholar 

  3. Templer, R. H., Seddon, J. M. & Warrender, N. A. Biophysical Chem. (in the press).

  4. Rand, P. R., Fuller, N., Gruner, S. M. & Parsegian, A. V. Biochemistry 29, 76–87 (1990).

    Article  CAS  Google Scholar 

  5. Chung, H. & Caffrey, M. Biophys. J. (in the press).

  6. Anderson, D. M., Gruner, S. M. & Leibler, S. Proc. natn. Acad. Sci. U.S.A. 85, 5364–5368 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Nanavati, C., Markin, V. S., Oberhauser, A. F. & Fernandez, J. M. Biophys. J. 63, 1118–1132 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Longley, W. & Mclntosh, T. J. Nature 303, 612–614 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Scriven, L. E. Nature 263, 123–125 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Hyde, S. T., Andersson, S., Ericsson, B. & Larsson, K. Z. Kristallogr. 168, 213–219 (1984).

    Article  CAS  Google Scholar 

  11. Andersson, S., Hyde, S. T., Larsson, K. & Linden, S. Chem. Rev. 88, 221–242 (1988).

    Article  CAS  Google Scholar 

  12. Caffrey, M. Biochemistry 26, 6349–6363 (1987).

    Article  CAS  Google Scholar 

  13. Lindblom, G., Larsson, K., Johansson, L., Fontell, K. & Forsén, S. J. Am. chem. Soc. 101, 5465–5470 (1979).

    Article  CAS  Google Scholar 

  14. Larsson, K. Nature 304, 664 (1983).

    Article  ADS  Google Scholar 

  15. Mariani, P., Luzzati, V. & Delacroix, H. J. molec. Biol. 204, 165–189 (1988).

    Article  CAS  Google Scholar 

  16. Parsegian, V. A., Rand, R. P. & Fuller, N. Meth. Enzym. 127, 400–416 (1979).

    Article  Google Scholar 

  17. Turner, D. C., Wang, Z.-G., Gruner, S. M., Mannock, D. A. & McElhaney, R. N. J. Phys. ll France 2, 2039–2063 (1992).

    Article  CAS  Google Scholar 

  18. Kirk, G. L., Gruner, S. M. & Stein, D. L. Biochemistry 23, 1093–1102 (1984).

    Article  CAS  Google Scholar 

  19. Lindblom, G. & Rilfors, L. Biochim. biophys. Acta 988, 221–256 (1989).

    Article  CAS  Google Scholar 

  20. Kozlov, M. M. & Winterhalter, M. J. Phys. II France 1, 1077–1100 (1991).

    Article  CAS  Google Scholar 

  21. Tate, M. W., Eikenberry, E. F., Turner, D. C., Shyamsunder, E. & Gruner, S. M. Chem. Phys. Lipids 57, 147–164 (1991).

    Article  CAS  Google Scholar 

  22. Seddon, J. M. Biochim. biophys. Acta 1031, 1–69 (1990).

    Article  CAS  Google Scholar 

  23. Michel, B. E. & Kaufmann, M. R. Pl. Physiol. 51, 914–916 (1973).

    Article  CAS  Google Scholar 

  24. Chung, H. & Caffrey, M. Biophys. J. 63, 438–447 (1992)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, H., Caffrey, M. The curvature elastic-energy function of the lipid–water cubic mesophase. Nature 368, 224–226 (1994). https://doi.org/10.1038/368224a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368224a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing