Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A convective model for the zonal jets in the atmospheres of Jupiter and Saturn

An Erratum to this article was published on 14 April 1994

Abstract

THE atmospheres of Jupiter and Saturn are stably stratified in a region extending from the tropopause down to the level of the cloud tops; the underlying region is dominated by convective overturning1,2. Horizontal velocities within the stable region decrease with altitude3, suggesting that they are driven by momentum transfer from the deeper flow. But the vertical structure within the convective region is still poorly understood1. Its visible component at cloud level consists of alternating east-west zonal jets, with the more pronounced eastward jets attaining velocities in excess of 100 m s-1and widths of about 104 km (refs 2 and 3). Here we propose a mechanism whereby the zonal jets result from convection cells resembling atmospheric Hadley cells on the Earth4. We demonstrate this mechanism using a rotating axisymmetric bowl of fluid, uniformly cooled at the free surface; radially overturning convection cells are established, the surface manifestation of which are pronounced azimuthal jets. A simple linear theory reproduces the main characteristics of the laboratory flow and predicts a relatively shallow penetration depth for the convection cells on Jupiter and Saturn.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gierasch, P. J. & Conrath, B. J. J. geophys. Res. 98, 5459–5469 (1993).

    Article  ADS  Google Scholar 

  2. Flaser, F. M. Icarus 65, 280–303 (1986).

    Article  ADS  Google Scholar 

  3. Gierasch, P. J., Conrath, B. J. & Magalhaes, J. A. Icarus 67, 456–483 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Held, I. M. & Hou, A. Y. J. atmos. Sci. 37, 515–533 (1980).

    Article  ADS  Google Scholar 

  5. Read, P. L. Icarus 65, 304–334 (1986).

    Article  ADS  Google Scholar 

  6. Read, P. L. & Hide, R. Nature 308, 45–48 (1984).

    Article  ADS  Google Scholar 

  7. Sommeria, J., Meyers, S. D. & Swiney, H. L. Nature 331, 689–693 (1988).

    Article  ADS  Google Scholar 

  8. Ingersoll, A. P. & Cuong, P. G. J. atmos. Sci. 38, 2067–2076 (1981).

    Article  ADS  Google Scholar 

  9. Marcus, P. S. Nature 331, 693–696 (1988).

    Article  ADS  Google Scholar 

  10. Williams, G. P. & Wilson, R. J. J. atmos. Sci. 45, 207–241 (1988).

    Article  ADS  Google Scholar 

  11. Dowling, T. E. & Ingersoll, A. P. J. atmos. Sci. 46, 3256–3278 (1989).

    Article  ADS  Google Scholar 

  12. Koschmieder, E. L. & Lewis, E. R. J. atmos. Sci. 43, 2514–2526 (1986).

    Article  ADS  Google Scholar 

  13. Hathaway, D. H. & Fowlis, W. W. J. Fluid Mech. 172, 401–418 (1986).

    Article  ADS  Google Scholar 

  14. Hart, J. E., Glatzmaier, G. A. & Toomre, J. J. Fluid Mech. 173, 519–544 (1986).

    Article  ADS  Google Scholar 

  15. Pedlosky, J. Geophysical Fluid Dynamics (Springer, New York, 1987).

    Book  Google Scholar 

  16. Condie, S. A. & Rhines, P. B. J. Fluid Mech. (submitted).

  17. Schneider, E. K. J. atmos. Sci. 41, 1093–1115 (1984).

    Article  ADS  Google Scholar 

  18. Busse, F. H. Icarus 29, 255–260 (1976).

    Article  ADS  Google Scholar 

  19. Ingersoll, A. P. & Pollard, D. Icarus 52, 62–80 (1982).

    Article  ADS  Google Scholar 

  20. Sun, Z-P., Schubert, G. & Glatzmaier, G. A. Science 260, 661–664 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Ingersoll, A. P. & Cuzzi, J. N. J. atmos. Sci. 26, 981–985 (1969).

    Article  ADS  Google Scholar 

  22. Limaye, S. S. Icarus 65, 335–352 (1986).

    Article  ADS  Google Scholar 

  23. Boubnov, B. M. & Golitsyn, G. S. J. Fluid Mech. 167, 503–531 (1986).

    Article  ADS  Google Scholar 

  24. Chen, R., Fernando, H. J. S. & Boyer, D. L. J. geophys. Res. 94, 18445–18453 (1989).

    Article  ADS  Google Scholar 

  25. Fernando, H. J. S., Chen, R. & Boyer, D. L. J. Fluid Mech. 228, 513–547 (1991).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Condie, S., Rhines, P. A convective model for the zonal jets in the atmospheres of Jupiter and Saturn. Nature 367, 711–713 (1994). https://doi.org/10.1038/367711a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367711a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing